OFDM同步技术

2024-04-24 21:28
文章标签 技术 同步 ofdm

本文主要是介绍OFDM同步技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、OFDM 同步技术
  • 二、MATLAB 仿真
    • 1、STO 估计技术
      • ①、核心源码
      • ②、仿真结果
    • 2、CFO 估计技术
      • ①、核心源码
      • ②、仿真结果
  • 三、资源自取


前言

本文对 OFDM 同步技术以思维导图的形式呈现,有关仿真部分进行了讲解实现。


一、OFDM 同步技术

OFDM 同步技术思维导图如下图所示,如有需求请到文章末尾端自取。
在这里插入图片描述

二、MATLAB 仿真

1、STO 估计技术

①、核心源码

%基于CP,采用最大相关和最小距离算法完成STO的估计clear, figure(1), clf, figure(2), clf
nSTOs = [-3 -3 2 2];                % 对应 STO 的采样数  提前、提前、滞后、滞后
CFOs = [0 0.5 0 0.5];               % CFO 向量
SNRdB = 30;                         % SNR
MaxIter = 10;                       % 迭代次数
%CFOs = [0 0 0 0];
Nfft = 128;                         % FFT 大小
Ng = Nfft/4;                        % GI 长度
Nofdm = Nfft + Ng;                  % OFDM 符号长度
Nbps = 2;                           % 2/4 对应 QPSK/16QAM 
M = 2^Nbps;                         % 符号对应的可能性数量
Es = 1; 
A = sqrt(3/2/(M-1)*Es);             % QAM 归一化因子
N = Nfft; 
com_delay = Nofdm/2;                % 公共时延
Nsym = 100;                         % 一共有一百个 OFDM 符号
rand('seed',1);                     % 设置种子
randn('seed',1);
for i = 1:length(nSTOs)             % 对于每一个不同的 \delta STOnSTO = nSTOs(i);  CFO = CFOs(i);x = [];                          % 初始化信号块,最后 x 就是发送出来的 OFDM 模块for m = 1:Nsym % 随机位生成 msgint=randi([0 M-1], 1, N);  % 生成传输符号,1*128 个 0-3 的数Xf = A .* qammod(msgint, M, 'UnitAveragePower', true);% 调制成复数%***********************缺少了倒置的过程***********************%xt = ifft(Xf, Nfft);          % 发送x_sym = add_CP(xt, Ng);       % 加 CPx = [x x_sym];end%*********************** 信道 ************************%%%%%%在这里根据需求添加信道,先假设是没有信道y = x;  % 没有信道影响sig_pow = y*y' / length(y);          % 计算能量,sig_pow= mean(mean(y.*conj(y),2))% 频率偏移 + 符号定时偏移 y_CFO = add_CFO(y, CFO, Nfft);       % 加 CFOy_CFO_STO = add_STO(y_CFO, -nSTO);   % 加STO,这是加在整个信号上的,因此头尾补零就行了;但是取-是因为:δ<0 是提前,δ>0是滞后v_ML = zeros(1, Ng);                 % 初始化v_Cl = zeros(1, Ng);Mag_cor = 0;                         % arg的结果Mag_dif = 0;%%添加加性高斯白噪声for iter = 1:MaxIter% 加噪声y_aw = awgn(y_CFO_STO, SNRdB, 'measured');%%%%%%%符号定时获取[STO_cor, mag_cor] = STO_by_correlation(y_aw, Nfft, Ng, com_delay);               % 书中自带[STO_cor_temp,mag_cor_temp] = STO_by_correlation_sim1(y_aw,Nfft,Ng,com_delay);    % 我自己编写%%%%%经验证,以上两者函数结果一致[STO_dif,mag_dif] = STO_by_difference(y_aw,Nfft,Ng,com_delay); %书中自带[STO_dif_temp,mag_dif_temp] = STO_by_difference_sim1(y_aw,Nfft,Ng,com_delay); %我自己编写%%%%%经验证,以上两者函数结果一致% 计数% 这里取反了,返回了符合"左加右减"的直觉的STOv_ML(-STO_cor+Ng/2)= v_ML(-STO_cor+Ng/2)+1;v_Cl(-STO_dif+Ng/2)= v_Cl(-STO_dif+Ng/2)+1;Mag_cor= Mag_cor + mag_cor;Mag_dif= Mag_dif + mag_dif;end % End of for loop of iter%%%%%%% Probabilityv_ML_v_Cl = [v_ML; v_Cl]*(100/MaxIter);      % 取百分数figure(1+i-1); set(gca,'fontsize',9);   % 将当前坐标轴的字体大小设置为9
%    subplot(220+i)bar(-Ng/2+1:Ng/2,v_ML_v_Cl');hold on, grid onstr = sprintf('nSTO Estimation: nSTO=%d, CQFO=%1.2f, SNR=%3d[dB]',nSTO,CFO,SNRdB);           title(str); xlabel('Sample'), ylabel('Probability');legend('ML','Classen'); axis([-Ng/2-1 Ng/2+1 0 100])%%%%%%% Time metricMag_cor = Mag_cor/MaxIter; [Mag_cor_max,ind_max] = max(Mag_cor);nc= ind_max-1-com_delay;Mag_dif = Mag_dif/MaxIter; [Mag_dif_min,ind_min] = min(Mag_dif);nd= ind_min-1-com_delaynn= -Nofdm/2 + [0:length(Mag_cor)-1];  % -80~79
%   nt= nSTO;
%    figure(2);
%    subplot(220+i);figure(5+i-1); plot(nn,Mag_cor,nn,1.5*Mag_dif,'r:','markersize',1);hold onstem(nc,Mag_cor_max,'b','markersize',5);stem(nSTO,Mag_cor(nSTO+com_delay+1),'k.','markersize',5); % Estimated/True Maximum valuestr1 = sprintf('STO Estimation - ML(b-)/Classen(r:) for nSTO=%d, CFO=%1.2f',nSTO,CFO); %,SNRdB);title(str1); xlabel('Sample'), ylabel('Magnitude'); %stem(n1,Mag_dif_min,'r','markersize',5)stem(nd,Mag_dif(nd+com_delay+1),'r','markersize',5);stem(nSTO,Mag_dif(nSTO+com_delay+1),'k.','markersize',5); % Estimated/True Minimum valueset(gca,'fontsize',9, 'XLim',[-32 32], 'XTick',[-10 -3 0 2 10]); %, xlim([-50 50]),legend('基于相关的','基于差值最小的'); 
end % End of for loop of i

完整源码文末自取

②、仿真结果

在这里插入图片描述
在这里插入图片描述

由上两个图所示,当 STO = -3,CFO = 0时,可以看到基于差值最小的方法估计的 STO 更为准确。
在这里插入图片描述
在这里插入图片描述
由上两个图所示,当 STO = -3,CFO = 0.5时,可以看到基于差值最小的方法和基于相关估计的 STO 都很准确。
在这里插入图片描述
在这里插入图片描述
由上两个图所示,当 STO = 2,CFO = 0 时,可以看到基于差值最小的方法和基于相关估计的 STO 都很准确。
在这里插入图片描述
在这里插入图片描述
由上两个图所示,当 STO = 2,CFO = 0.5 时,可以看到基于差值最小的方法估计的 STO 更为准确。

2、CFO 估计技术

①、核心源码

%完成时域基于CP的方法和频域的Moose/Classen方法,用于后续CFO补偿
clear, clf
CFO = 0.15;                     % CFO(载波频率偏移)大小
% CFO = 0;
Nfft=128;                       % FFT采样数  
Nbps=2;                         % QPSK或QAM
M=2^Nbps;                       % 每个符号代表几比特
Es=1;                           % 能量
A=sqrt(3/2/(M-1)*Es);           % QAM归一化
N=Nfft;                         % 发送的符号长度,为了方便,和Nfft保持一致
Ng=Nfft/4;                      % GI长度
Nofdm=Nfft+Ng;                  % 一个OFDM符号的长度
Nsym=3;                         % 一共发送了3个OFDM符号,前两个是导频,最后一个是真正发送的数据符号
% h=complex(randn,randn)/sqrt(2);
% %h=[1 zeros(1,5)]; 
% channel(h,0);  
%Transmit signal
x=[];
for m=1:Nsym                    % 前两个是导频,最后一个是真正发送的数据符号msgint=randi([0 M-1],1,N);   % 生成要发送的符号if m<=2                      % Xp = add_pilot(zeros(1,Nfft),Nfft,4);    % 生成导频Xf=Xp; % add_pilotelse  %Xf= QAM(msgint((i-1)*N+1:i*N),Nbps);  % constellation mapping. average power=1        Xf = A.*qammod(msgint,M,'UnitAveragePower',true);end                                      xt = ifft(Xf,Nfft);          % ifft  x_sym = add_CP(xt,Ng);       % 加CPx= [x x_sym];                % 将三个OFDM符号依次拼接
end    %channel 可添加所需信道
y=x; % No channel effect%Signal power calculation
sig_pow= y*y'/length(y); % Signal power calculation%%%%
SNRdBs= 0:3:30;  
% SNRdBs= 100; 设100是为调试程序  
MaxIter = 100;  
for i=1:length(SNRdBs)SNRdB = SNRdBs(i);MSE_CFO_CP = 0; MSE_CFO_Moose = 0; MSE_CFO_Classen = 0;rand('seed',1);              % 设置种子来保证每次仿真结果一致randn('seed',1);y_CFO= add_CFO(y,CFO,Nfft);  % 增加CFO,此处是在时域添加的,因此是×相位% 多次迭代取平均for iter=1:MaxIter%y_aw=add_AWGN(y_CFO,sig_pow,SNRdB,'SNR',Nbps);  % AWGN added, signal power=1y_aw = awgn(y_CFO,SNRdB,'measured');              % 增加高斯白噪声Est_CFO_CP = CFO_CP(y_aw,Nfft,Ng); % CP-based     % 根据CP测算CFOMSE_CFO_CP = MSE_CFO_CP + (Est_CFO_CP-CFO)^2;     % 平方累计Est_CFO_Moose = CFO_Moose(y_aw,Nfft);             % Moose估计MSE_CFO_Moose = MSE_CFO_Moose + (Est_CFO_Moose-CFO)^2;% 平方累计Est_CFO_Classen = CFO_Classen(y_aw,Nfft,Ng,Xp); % Classen (Pilot-based)MSE_CFO_Classen = MSE_CFO_Classen + (Est_CFO_Classen-CFO)^2;end % the end of for (iter) loopMSE_CP(i) = MSE_CFO_CP/MaxIter; MSE_Moose(i) = MSE_CFO_Moose/MaxIter;  MSE_Classen(i) = MSE_CFO_Classen/MaxIter;
end%ebn0 end    
semilogy(SNRdBs, MSE_CP,'-+');
grid on, hold on
semilogy(SNRdBs, MSE_Moose,'-x'); semilogy(SNRdBs, MSE_Classen,'-*');
xlabel('SNR[dB]'), ylabel('MSE'); title('CFO Estimation'); %axis([0 30 10e-8 10e-2])
% str=sprintf('CFO = %1.2f',CFO);
legend('CP-based technique','Moose (Preamble-based)','Classen (Pilot-based)');
% legend(str);

完整源码文末自取

②、仿真结果

在这里插入图片描述
可以观察到,随着接收信号的 SNR 增大,CFO 估计的 MSE 减小。估计技术的性能取决于用于 CFO 估计的 CP 中的采样数、前导数和导频数。

三、资源自取

链接:OFDM同步技术

在这里插入图片描述


我的qq:2442391036,欢迎交流!


这篇关于OFDM同步技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932883

相关文章

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

C#控制台程序同步调用WebApi实现方式

《C#控制台程序同步调用WebApi实现方式》控制台程序作为Job时,需同步调用WebApi以确保获取返回结果后执行后续操作,否则会引发TaskCanceledException异常,同步处理可避免异... 目录同步调用WebApi方法Cls001类里面的写法总结控制台程序一般当作Job使用,有时候需要控制

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

Qt如何实现文本编辑器光标高亮技术

《Qt如何实现文本编辑器光标高亮技术》这篇文章主要为大家详细介绍了Qt如何实现文本编辑器光标高亮技术,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录实现代码函数作用概述代码详解 + 注释使用 QTextEdit 的高亮技术(重点)总结用到的关键技术点应用场景举例示例优化建议

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流