hive udtf的使用

2024-04-24 16:32
文章标签 使用 hive udtf

本文主要是介绍hive udtf的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:http://blog.linezing.com/2011/03/hive%E4%B8%ADudtf%E7%BC%96%E5%86%99%E5%92%8C%E4%BD%BF%E7%94%A8


1. UDTF介绍

UDTF(User-Defined Table-Generating Functions)  用来解决 输入一行输出多行(On-to-many maping) 的需求。

2. 编写自己需要的UDTF

  • 继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF。
  • 实现initialize, process, close三个方法
  • UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型)。初始化完成后,会调用process方法,对传入的参数进行处理,可以通过forword()方法把结果返回。最后close()方法调用,对需要清理的方法进行清理。

下面是我写的一个用来切分”key:value;key:value;”这种字符串,返回结果为key, value两个字段。供参考:

   1: import java.util.ArrayList;

   2:

   3: import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;

   4: import org.apache.hadoop.hive.ql.exec.UDFArgumentException;

   5: import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;

   6: import org.apache.hadoop.hive.ql.metadata.HiveException;

   7: import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;

   8: import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;

   9: import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;

  10: import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;

  11:

  12: public class ExplodeMap extends GenericUDTF{

  13:

  14:     @Override

  15:     public void close() throws HiveException {

  16:         // TODO Auto-generated method stub    

  17:     }

  18:

  19:     @Override

  20:     public StructObjectInspector initialize(ObjectInspector[] args)

  21:             throws UDFArgumentException {

  22:         if (args.length != 1) {

  23:             throw new UDFArgumentLengthException("ExplodeMap takes only one argument");

  24:         }

  25:         if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {

  26:             throw new UDFArgumentException("ExplodeMap takes string as a parameter");

  27:         }

  28:

  29:         ArrayList<String> fieldNames = new ArrayList<String>();

  30:         ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();

  31:         fieldNames.add("col1");

  32:         fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);

  33:         fieldNames.add("col2");

  34:         fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);

  35:

  36:         return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,fieldOIs);

  37:     }

  38:

  39:     @Override

  40:     public void process(Object[] args) throws HiveException {

  41:         String input = args[0].toString();

  42:         String[] test = input.split(";");

  43:         for(int i=0; i<test.length; i++) {

  44:             try {

  45:                 String[] result = test[i].split(":");

  46:                 forward(result);

  47:             } catch (Exception e) {

  48:                 continue;

  49:             }

  50:         }

  51:     }

  52: }

3. 使用方法

UDTF有两种使用方法,一种直接放到select后面,一种和lateral view一起使用。

1:直接select中使用:select explode_map(properties) as (col1,col2) from src;

  • 不可以添加其他字段使用:select a, explode_map(properties) as (col1,col2) from src
  • 不可以嵌套调用:select explode_map(explode_map(properties)) from src
  • 不可以和group by/cluster by/distribute by/sort by一起使用:select explode_map(properties) as (col1,col2) from src group by col1, col2

2:和lateral view一起使用:select src.id, mytable.col1, mytable.col2 from src lateral view explode_map(properties) mytable as col1, col2;

  • 此方法更为方便日常使用。执行过程相当于单独执行了两次抽取,然后union到一个表里。

4. 参考文档


http://wiki.apache.org/hadoop/Hive/LanguageManual/UDF

http://wiki.apache.org/hadoop/Hive/DeveloperGuide/UDTF

http://www.slideshare.net/pauly1/userdefined-table-generating-functions

5 测试实例参考:

注:自己额外添加

测试 数据:
user action 1 2 3
user action 4 5 6 7
user action 8 9 10 11 12
建表:
CREATE external table wftest (user string,action string,objects string) ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' WITH SERDEPROPERTIES( 'input.regex' ='^([^\\s]*) ([^\\s]*) (.*)$') STORED AS TEXTFILE LOCATION '/user/hdfs/home/wangfeng4/';
hive> desc wftest;
OK
user string from deserializer
action string from deserializer
objects string from deserializer
Time taken: 0.25 seconds
hive> select * from wftest;
OK
user action 1 2 3
user action 4 5 6 7
user action 8 9 10 11 12
NULL NULL NULL
Time taken: 0.245 seconds
hive> select explode(split(objects," ")) as object from wftest;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
655.104: [GC 655.104: [ParNew: 1638400K->25080K(1843200K), 0.0364240 secs] 1638400K->25080K(2150400K), 0.0365450 secs] [Times: user=0.09 sys=0.01, real=0.04 secs]
Starting Job = job_201112221522_3256344, Tracking URL = http://jobtracker.aer.dip.sina.com.cn:50030/jobdetails.jsp?jobid=job_201112221522_3256344
Kill Command = /usr/lib/hadoop/bin/hadoop job -Dmapred.job.tracker=jobtracker.aer.dip.sina.com.cn:8021 -kill job_201112221522_3256344
2012-06-01 16:08:18,085 Stage-1 map = 0%, reduce = 0%
2012-06-01 16:08:21,109 Stage-1 map = 100%, reduce = 0%
2012-06-01 16:08:22,117 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201112221522_3256344
OK
1
2
3
4
5
6
7
8
9
10
11
12
Time taken: 16.78 seconds
hive> select user,explode(split(objects," ")) as object from wftest;
FAILED: Error in semantic analysis: UDTF's are not supported outside the SELECT clause, nor nested in expressions
hive>
最后一个 这种不支持。
如果觉得explode 不成 可以自己写udtf.

这篇关于hive udtf的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932247

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他