mmdetection - anchor-based方法训练流程解析

2024-04-24 11:08

本文主要是介绍mmdetection - anchor-based方法训练流程解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

训练流程图
在这里插入图片描述
最终会创建一个runner,然后调用runner.run时,实际会根据workflow中是train还是val,调用runner.py下的train和val函数。
batch_processor

def batch_processor(model, data, train_mode):# 这里的train_mode实际没用到losses = model(**data)loss, log_vars = parse_losses(losses)outputs = dict(loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))return outputs

mmcv/runner/runner.py
train

def train(self, data_loader, **kwargs):self.model.train()self.mode = 'train'self.data_loader = data_loaderself._max_iters = self._max_epochs * len(data_loader)self.call_hook('before_train_epoch')for i, data_batch in enumerate(data_loader):self._inner_iter = iself.call_hook('before_train_iter')outputs = self.batch_processor(self.model, data_batch, train_mode=True, **kwargs)if not isinstance(outputs, dict):raise TypeError('batch_processor() must return a dict')if 'log_vars' in outputs:self.log_buffer.update(outputs['log_vars'],outputs['num_samples'])self.outputs = outputsself.call_hook('after_train_iter')self._iter += 1self.call_hook('after_train_epoch')self._epoch += 1

val

def val(self, data_loader, **kwargs):self.model.eval()self.mode = 'val'self.data_loader = data_loaderself.call_hook('before_val_epoch')for i, data_batch in enumerate(data_loader):self._inner_iter = iself.call_hook('before_val_iter')with torch.no_grad():outputs = self.batch_processor(self.model, data_batch, train_mode=False, **kwargs)if not isinstance(outputs, dict):raise TypeError('batch_processor() must return a dict')if 'log_vars' in outputs:self.log_buffer.update(outputs['log_vars'],outputs['num_samples'])self.outputs = outputsself.call_hook('after_val_iter')self.call_hook('after_val_epoch')

validate目前只在_dist_train中有用到

训练时,实际调用:losses = model(**data),验证时,实际调用hook,运行:

with torch.no_grad():result = runner.model(return_loss=False, rescale=True, **data_gpu)

其中,TwoStageDetector和SingleStageDetector都继承了BaseDetector,在BaseDetector中,forward函数定义如下:

@auto_fp16(apply_to=('img', ))
def forward(self, img, img_meta, return_loss=True, **kwargs):if return_loss:return self.forward_train(img, img_meta, **kwargs)else:return self.forward_test(img, img_meta, **kwargs)

对于forward_test,其代码如下:

def forward_test(self, imgs, img_metas, **kwargs):for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:if not isinstance(var, list):raise TypeError('{} must be a list, but got {}'.format(name, type(var)))num_augs = len(imgs)if num_augs != len(img_metas):raise ValueError('num of augmentations ({}) != num of image meta ({})'.format(len(imgs), len(img_metas)))# TODO: remove the restriction of imgs_per_gpu == 1 when preparedimgs_per_gpu = imgs[0].size(0)assert imgs_per_gpu == 1if num_augs == 1:return self.simple_test(imgs[0], img_metas[0], **kwargs)else:return self.aug_test(imgs, img_metas, **kwargs)

由上可以看出,子类需要写simple_test和aub_test函数。
对于一个检测模型(一阶或者二阶),在其class中,需要重写以下函数:

  • forward_train
  • simple_test
  • aug_test # 非必须

下面以retinanet举个例子,在retinanet的config文件中,model的type是RetinaNet,在mmdet/models/detectors/retinanet.py中,定义了RetinaNet,它的父类是SingleStageDetector,定义在mmdet/models/detectors/single_stage.py中,三个重要函数的代码如下:

def forward_train(self,img,img_metas,gt_bboxes,gt_labels,gt_bboxes_ignore=None):x = self.extract_feat(img)outs = self.bbox_head(x)loss_inputs = outs + (gt_bboxes, gt_labels, img_metas, self.train_cfg)losses = self.bbox_head.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)return lossesdef simple_test(self, img, img_meta, rescale=False):x = self.extract_feat(img)outs = self.bbox_head(x)bbox_inputs = outs + (img_meta, self.test_cfg, rescale)bbox_list = self.bbox_head.get_bboxes(*bbox_inputs)bbox_results = [bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes)for det_bboxes, det_labels in bbox_list]return bbox_results[0]def aug_test(self, imgs, img_metas, rescale=False):raise NotImplementedError

由上可知,计算loss的函数是在head中定义的,RetinaHead定义在mmdet/models/anchor_heads/retina_head.py中,RetinaHead三个关键函数的代码如下:

def _init_layers(self):self.relu = nn.ReLU(inplace=True)self.cls_convs = nn.ModuleList()self.reg_convs = nn.ModuleList()for i in range(self.stacked_convs):chn = self.in_channels if i == 0 else self.feat_channelsself.cls_convs.append(ConvModule(chn,self.feat_channels,3,stride=1,padding=1,conv_cfg=self.conv_cfg,norm_cfg=self.norm_cfg))self.reg_convs.append(ConvModule(chn,self.feat_channels,3,stride=1,padding=1,conv_cfg=self.conv_cfg,norm_cfg=self.norm_cfg))self.retina_cls = nn.Conv2d(self.feat_channels,self.num_anchors * self.cls_out_channels,3,padding=1)self.retina_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 3, padding=1)def init_weights(self):for m in self.cls_convs:normal_init(m.conv, std=0.01)for m in self.reg_convs:normal_init(m.conv, std=0.01)bias_cls = bias_init_with_prob(0.01)normal_init(self.retina_cls, std=0.01, bias=bias_cls)normal_init(self.retina_reg, std=0.01)def forward_single(self, x):cls_feat = xreg_feat = xfor cls_conv in self.cls_convs:cls_feat = cls_conv(cls_feat)for reg_conv in self.reg_convs:reg_feat = reg_conv(reg_feat)cls_score = self.retina_cls(cls_feat)bbox_pred = self.retina_reg(reg_feat)return cls_score, bbox_pred

其中,_init_layers创建head的结构,init_weights对conv的weight和bias做初始化,forward_single是经过head计算得到的分类和检测框预测结果。
forward
在具体的方法对应的head定义forward_single,最后由anchor_head.py中的forward函数进行组装。

from six.moves import map, zip
def multi_apply(func, *args, **kwargs):pfunc = partial(func, **kwargs) if kwargs else func # 将func的kwargs固定,返回该函数# 这里的*args=feats,调用forward_single对feats的元素依次跑前向map_results = map(pfunc, *args) # 得到[(stride1_cls,stride1_bbox,...), (stride2_cls,stride2_bbox, ...]return tuple(map(list, zip(*map_results)))# zip(*map_results) 得到 [(stride1_cls,stride2_cls,stride3_cls,...),(stride1_bbox,stride2_bbox,stride3_bbox,...)]# map(list, zip(*map_results)) 将(stride1_cls,stride2_cls,stride3_cls,...)变为[stride1_cls,stride2_cls,stride3_cls,...]# tuple之后,最后得到([stride1_cls,stride2_cls,stride3_cls,...],[stride1_bbox,stride2_bbox,stride3_bbox,...])def forward(self, feats):# 输入feats是一个list,长度为stride个数,其中元素为nchwreturn multi_apply(self.forward_single, feats)def forward_single(self, x):# 这里的x为feats中的某一个元素cls_feat = xreg_feat = xfor cls_conv in self.cls_convs:cls_feat = cls_conv(cls_feat)for reg_conv in self.reg_convs:reg_feat = reg_conv(reg_feat)cls_score = self.retina_cls(cls_feat)bbox_pred = self.retina_reg(reg_feat)return cls_score, bbox_pred

loss

这篇关于mmdetection - anchor-based方法训练流程解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931582

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3