24.4.20 蚂蚁笔试(开发)a1.09

2024-04-24 05:36
文章标签 笔试 开发 20 蚂蚁 24.4 a1.09

本文主要是介绍24.4.20 蚂蚁笔试(开发)a1.09,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

只是个人记录,玻璃心请大佬轻喷,如果有幸能得到大佬的指教那就更好啦~

若干单选和多选,感觉没有太难。下面是三个算法题(记不住具体的题目了,)

题目1

大致题意:数组a有n个元素,让求数组a的权值(权值计算方式:正数元素个数-负数元素个数)。现在对其中k个元素取反(取其相反数),求现在数组a的权值最大为多少?

输入描述:

第一行 n代表数组元素个数,k代表修改的元素个数

第二行 数组a,元素以空格隔开

题解:一定不要忘记0    让k先对负数取反,可能的话,剩下的取反施加再0上面,最后不得已再施加在正数上面。

伪码:

x=正数个数

y=负数个数

z=0的个数

if k <y:

        print(x+k-y)

elif k==y:

        print(x+k)

else:

        if k<=z+y:

                print(x+y)

        else:

                print(x+y-(k-y-z)-(k-y-z))

题目2

大致题意:构造数字x=x*k,x初始为1,k是由1或2组成的数字(满足条件的k如2,12,121,22221等),求x最少成几次能够变成n.  输入描述:一个数字n(n最大为2*1e5)代表x终点,输出描述:y代表最少次数

输入描述:

第一行 n代表构造目标

输出描述:

第一行 代表最少次数

题解: 随便输出的,过了4%. 不太会

事后和同学讨论,也许可以先打表,因为n最大并不是很大。然后dfs.

result =[]
ans = 18
def find_numbers():numbers = []for i in range(1, 200001):if all(digit in ['1', '2'] for digit in str(i)):numbers.append(i)return numbers
def check(n,res,cur):global result,ansif cur==len(result):returnif n==1:ans = min(ans,res)returnfor i in range(len(result)):if n%result[i]==0:check(n/result[i],res+1,i+1)result = find_numbers()
result.sort(reverse=True)
#print(result)
myset = (1,2,4,6,8)
t = int(input())
for i in range(t):n = int(input())if n%10 not in myset:print(-1)continueif n==1:print(0)continueans = 18  ##log2*1e5<18check(n,0,0)if ans == 18:ans = -1print(ans)

题目3

大致题意:数组a每个元素代表硬币金额,数组p代表取出第i个硬币的概率(具体概率这样计算p[i]/sum(p数组)),现在求取出硬币的和不小于x的期望。
输入:
第一行n,x分别代表数组元素个数和目标
第二行 就是数组a
第三行 是数组p

(数组a元素大小最大为500,n,x最大也是500)
输出:
期望模mod=1e9+7(期望可以由有理数x/y表示,要求输出(x/y%mod))它提示:对分数取模可以这样算,在[1,p-1]区间内找一个k,满足k*y%mod==x,这个k就是要的结果。

样例,
输入
2 5
3 6
2 4
样例解释:3取2次才不小于5,概率是1/3,6取一次满足不小于5,概率为2/3.期望就是2/3 *2  +   2/3*1=4/3,最后输出4/3模mod,结果为:333333337.

题解:用python的pow函数过了5%,但是感觉没什么问题不知道为啥了。事后讨论:前面计算期望简单,分数取模那里,使用扩展欧几里得求逆元的思想:参考以下

def modinv(x, mod):# 扩展的欧几里德算法求解模数逆元def egcd(a, b):if a == 0:return (b, 0, 1)else:g, y, x = egcd(b % a, a)return (g, x - (b // a) * y, y)gcd, x_inv, _ = egcd(x, mod)if gcd != 1:raise Exception('Modular inverse does not exist')else:return x_inv % mod
###k*y%mod ==x 利用逆元(x*x'%mod=1,则x'即为x%mod的逆元)的思想,把右边化为1
###k*y*x'%mod ==1   x’是x%mod的逆元
###k*(y*x')%mod ==1 最后也就是求(y+x')%mod的逆元
x = 4
mod = pow(10,9)+7
x_inv = modinv(x, mod)
y = 3
x = x_inv*y
x_inv = modinv(x,mod)
print("逆元是:", x_inv)

这篇关于24.4.20 蚂蚁笔试(开发)a1.09的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930888

相关文章

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

基于Python开发一个有趣的工作时长计算器

《基于Python开发一个有趣的工作时长计算器》随着远程办公和弹性工作制的兴起,个人及团队对于工作时长的准确统计需求日益增长,本文将使用Python和PyQt5打造一个工作时长计算器,感兴趣的小伙伴可... 目录概述功能介绍界面展示php软件使用步骤说明代码详解1.窗口初始化与布局2.工作时长计算核心逻辑3

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

如何基于Python开发一个微信自动化工具

《如何基于Python开发一个微信自动化工具》在当今数字化办公场景中,自动化工具已成为提升工作效率的利器,本文将深入剖析一个基于Python的微信自动化工具开发全过程,有需要的小伙伴可以了解下... 目录概述功能全景1. 核心功能模块2. 特色功能效果展示1. 主界面概览2. 定时任务配置3. 操作日志演示

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

一文教你如何解决Python开发总是import出错的问题

《一文教你如何解决Python开发总是import出错的问题》经常朋友碰到Python开发的过程中import包报错的问题,所以本文将和大家介绍一下可编辑安装(EditableInstall)模式,可... 目录摘要1. 可编辑安装(Editable Install)模式到底在解决什么问题?2. 原理3.

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Android开发环境配置避坑指南

《Android开发环境配置避坑指南》本文主要介绍了Android开发环境配置过程中遇到的问题及解决方案,包括VPN注意事项、工具版本统一、Gerrit邮箱配置、Git拉取和提交代码、MergevsR... 目录网络环境:VPN 注意事项工具版本统一:android Studio & JDKGerrit的邮

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3