吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.6-1.8

本文主要是介绍吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.6-1.8,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 第一门课:第二门课 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)
    • 第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)
      • 1.6 dropout 正则化(Dropout Regularization)

第一门课:第二门课 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)

第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)

1.6 dropout 正则化(Dropout Regularization)

除了𝐿2正则化,还有一个非常实用的正则化方法——“Dropout(随机失活)”,我们来看看它的工作原理。
在这里插入图片描述
假设你在训练上图这样的神经网络,它存在过拟合,这就是 dropout 所要处理的,我们复制这个神经网络,dropout 会遍历网络的每一层,并设置消除神经网络中节点的概率。假设网络中的每一层,每个节点都以抛硬币的方式设置概率,每个节点得以保留和消除的概率都是 0.5,设置完节点概率,我们会消除一些节点,然后删除掉从该节点进出的连线,最后得到一个节点更少,规模更小的网络,然后用 backprop 方法进行训练。

在这里插入图片描述
这是网络节点精简后的一个样本,对于其它样本,我们照旧以抛硬币的方式设置概率,保留一类节点集合,删除其它类型的节点集合。对于每个训练样本,我们都将采用一个精简后神经网络来训练它,这种方法似乎有点怪,单纯遍历节点,编码也是随机的,可它真的有效。不过可想而知,我们针对每个训练样本训练规模极小的网络,最后你可能会认识到为什么要正则化网络,因为我们在训练极小的网络。
在这里插入图片描述

如何实施 dropout 呢?方法有几种,接下来我要讲的是最常用的方法,即 inverted dropout(反向随机失活),出于完整性考虑,我们用一个三层(𝑙 = 3)网络来举例说明。编码中会有很多涉及到 3 的地方。我只举例说明如何在某一层中实施 dropout。首先要定义向量𝑑,𝑑[3]表示一个三层的 dropout 向量:

d3 = np.random.rand(a3.shape[0],a3.shape[1])

然后看它是否小于某数,我们称之为 keep-prob,keep-prob 是一个具体数字,上个示例中它是 0.5,而本例中它是 0.8,它表示保留某个隐藏单元的概率,此处 keep-prob 等于 0.8,它意味着消除任意一个隐藏单元的概率是 0.2,它的作用就是生成随机矩阵,如果对 a [ 3 ] a^{[3]} a[3]进行
因子分解,效果也是一样的。 d [ 3 ] d^{[3]} d[3]是一个矩阵,每个样本和每个隐藏单元,其中 d [ 3 ] d^{[3]} d[3]中的对应值为 1 的概率都是 0.8,对应为 0 的概率是 0.2,随机数字小于 0.8。它等于 1 的概率是 0.8,等于 0 的概率是 0.2。

接下来要做的就是从第三层中获取激活函数,这里我们叫它 a [ 3 ] a^{[3]} a[3] a [ 3 ] a^{[3]} a[3]含有要计算的激活函数, a [ 3 ] a^{[3]} a[3]等于上面的 a [ 3 ] a^{[3]} a[3]乘以 d [ 3 ] d^{[3]} d[3],a3 =np.multiply(a3,d3),这里是元素相乘,也可写为𝑎3 ∗= 𝑑3,它的作用就是让 d [ 3 ] d^{[3]} d[3]中所有等于 0 的元素(输出),而各个元素等于 0 的概率只有 20%,乘法运算最终把 d [ 3 ] d^{[3]} d[3]中相应元素输出,即让 d [ 3 ] d^{[3]} d[3]中 0 元素与 a [ 3 ] a^{[3]} a[3]中相对元素归零。
在这里插入图片描述
如果用 python 实现该算法的话,𝑑[3]则是一个布尔型数组,值为 true 和 false,而不是1 和 0,乘法运算依然有效,python 会把 true 和 false 翻译为 1 和 0,大家可以用 python 尝试一下。
最后,我们向外扩展𝑎[3],用它除以 0.8,或者除以 keep-prob 参数。

𝑎3/= 𝑘𝑒𝑒𝑝 − 𝑝𝑟𝑜𝑏

下面我解释一下为什么要这么做,为方便起见,我们假设第三隐藏层上有 50 个单元或50 个神经元,在一维上𝑎[3]是 50,我们通过因子分解将它拆分成50 × 𝑚维的,保留和删除它们的概率分别为 80%和 20%,这意味着最后被删除或归零的单元平均有 10(50×20%=10)个,现在我们看下𝑧[4],𝑧[4] = 𝑤[4]𝑎[3] + 𝑏[4],我们的预期是,𝑎[3]减少 20%,也就是说𝑎[3]中有 20%的元素被归零,为了不影响𝑧[4]的期望值,我们需要用𝑤[4]𝑎[3]/0.8,它将会修正或弥补我们所需的那 20%,𝑎[3]的期望值不会变,划线部分就是所谓的 dropout 方法。

在这里插入图片描述

这篇关于吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.6-1.8的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930855

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置