EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】

本文主要是介绍EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

EPSANet:一种高效的金字塔切分注意力网络

一、引言

在深度学习领域,注意力机制已经成为提升卷积神经网络性能的关键技术。其中,一种新型网络结构——EPSANet,通过引入金字塔切分注意力(Pyramid Split Attention, PSA)模块,为注意力机制的研究和应用提供了新的思路。EPSANet不仅在图像识别任务中表现出色,还在计算参数量上实现了高效性。
在这里插入图片描述

二、PSA模块的设计

PSA模块的核心思想在于利用多尺度的输入特征图,提取并整合不同尺度的空间信息,从而建立多尺度通道注意力间的长期依赖关系。具体设计包括以下几个关键步骤:

  1. 分组:将输入特征图按照通道数进行分组,以便在不同尺度上并行处理。
  2. 卷积核大小变化:针对不同尺度的分组,使用不同大小的卷积核进行卷积操作,以捕获不同尺度的空间信息。
  3. 特征图拼接:将不同尺度上的特征图进行拼接,以融合多尺度信息。
  4. SE模块提取通道加权值:通过SE(Squeeze-and-Excitation)模块学习每个通道的权重,实现对通道注意力的调整。在这里插入图片描述
    在这里插入图片描述

这种设计使得EPSANet能够以较低的模型复杂度学习注意力权重,并整合局部和全局注意力,建立长期的通道依赖关系。

三、EPSANet的性能

EPSANet在多个数据集上表现出色,尤其是在图像识别任务中。与SENet-50相比,EPSANet在ImageNet数据集上的Top-1准确率提高了1.93%。此外,在MS-COCO数据集上使用Mask-RCNN时,EPSANet的目标检测box AP提高了2.7,实例分割的mask AP提高了1.7。这些结果充分证明了EPSANet在提升模型性能方面的有效性。
在这里插入图片描述

在这里插入图片描述

即插即用的设计,EPSA模块具有即插即用的特性,可以轻松添加到现有的骨干网络中,无需复杂的修改即可获得显著的性能提升。这种设计理念使得EPSANet能够方便地应用于各种计算机视觉任务,为实际应用提供了极大的便利。

四、相关代码(pytorch)

import torch
import torch.nn as nnclass SEWeightModule(nn.Module):def __init__(self, channels, reduction=16):super(SEWeightModule, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)self.relu = nn.ReLU(inplace=True)self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.avg_pool(x)out = self.fc1(out)out = self.relu(out)out = self.fc2(out)weight = self.sigmoid(out)return weightdef conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1, groups=1):"""standard convolution with padding"""return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,padding=padding, dilation=dilation, groups=groups, bias=False)def conv1x1(in_planes, out_planes, stride=1):"""1x1 convolution"""return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)class PSAModule(nn.Module):def __init__(self, inplans, planes, conv_kernels=[3, 5, 7, 9], stride=1, conv_groups=[1, 4, 8, 16]):super(PSAModule, self).__init__()self.conv_1 = conv(inplans, planes//4, kernel_size=conv_kernels[0], padding=conv_kernels[0]//2,stride=stride, groups=conv_groups[0])self.conv_2 = conv(inplans, planes//4, kernel_size=conv_kernels[1], padding=conv_kernels[1]//2,stride=stride, groups=conv_groups[1])self.conv_3 = conv(inplans, planes//4, kernel_size=conv_kernels[2], padding=conv_kernels[2]//2,stride=stride, groups=conv_groups[2])self.conv_4 = conv(inplans, planes//4, kernel_size=conv_kernels[3], padding=conv_kernels[3]//2,stride=stride, groups=conv_groups[3])self.se = SEWeightModule(planes // 4)self.split_channel = planes // 4self.softmax = nn.Softmax(dim=1)def forward(self, x):batch_size = x.shape[0]x1 = self.conv_1(x)x2 = self.conv_2(x)x3 = self.conv_3(x)x4 = self.conv_4(x)feats = torch.cat((x1, x2, x3, x4), dim=1)feats = feats.view(batch_size, 4, self.split_channel, feats.shape[2], feats.shape[3])x1_se = self.se(x1)x2_se = self.se(x2)x3_se = self.se(x3)x4_se = self.se(x4)x_se = torch.cat((x1_se, x2_se, x3_se, x4_se), dim=1)attention_vectors = x_se.view(batch_size, 4, self.split_channel, 1, 1)attention_vectors = self.softmax(attention_vectors)feats_weight = feats * attention_vectorsfor i in range(4):x_se_weight_fp = feats_weight[:, i, :, :]if i == 0:out = x_se_weight_fpelse:out = torch.cat((x_se_weight_fp, out), 1)return out# 测试PSA模块
if __name__ == '__main__':model = PSAModule(inplans=384, planes=384).cuda() # 创建测试模块input = torch.rand(3, 384, 64, 64).cuda()  # 创建随机输入数据output = model(input)  # 前向传播print(output.shape) 

五、结论

EPSANet作为一种高效的金字塔切分注意力网络,通过引入PSA模块,实现了对多尺度空间信息的有效处理和整合。其出色的性能和即插即用的设计使得EPSANet在深度学习领域具有广泛的应用前景。随着研究的深入,我们期待看到更多基于EPSANet的应用和改进,为计算机视觉领域带来更多的创新和突破。

参考资料

论文:EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network

版权声明

本博客内容仅供学习交流,转载请注明出处。

这篇关于EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/930801

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实