EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】

本文主要是介绍EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

EPSANet:一种高效的金字塔切分注意力网络

一、引言

在深度学习领域,注意力机制已经成为提升卷积神经网络性能的关键技术。其中,一种新型网络结构——EPSANet,通过引入金字塔切分注意力(Pyramid Split Attention, PSA)模块,为注意力机制的研究和应用提供了新的思路。EPSANet不仅在图像识别任务中表现出色,还在计算参数量上实现了高效性。
在这里插入图片描述

二、PSA模块的设计

PSA模块的核心思想在于利用多尺度的输入特征图,提取并整合不同尺度的空间信息,从而建立多尺度通道注意力间的长期依赖关系。具体设计包括以下几个关键步骤:

  1. 分组:将输入特征图按照通道数进行分组,以便在不同尺度上并行处理。
  2. 卷积核大小变化:针对不同尺度的分组,使用不同大小的卷积核进行卷积操作,以捕获不同尺度的空间信息。
  3. 特征图拼接:将不同尺度上的特征图进行拼接,以融合多尺度信息。
  4. SE模块提取通道加权值:通过SE(Squeeze-and-Excitation)模块学习每个通道的权重,实现对通道注意力的调整。在这里插入图片描述
    在这里插入图片描述

这种设计使得EPSANet能够以较低的模型复杂度学习注意力权重,并整合局部和全局注意力,建立长期的通道依赖关系。

三、EPSANet的性能

EPSANet在多个数据集上表现出色,尤其是在图像识别任务中。与SENet-50相比,EPSANet在ImageNet数据集上的Top-1准确率提高了1.93%。此外,在MS-COCO数据集上使用Mask-RCNN时,EPSANet的目标检测box AP提高了2.7,实例分割的mask AP提高了1.7。这些结果充分证明了EPSANet在提升模型性能方面的有效性。
在这里插入图片描述

在这里插入图片描述

即插即用的设计,EPSA模块具有即插即用的特性,可以轻松添加到现有的骨干网络中,无需复杂的修改即可获得显著的性能提升。这种设计理念使得EPSANet能够方便地应用于各种计算机视觉任务,为实际应用提供了极大的便利。

四、相关代码(pytorch)

import torch
import torch.nn as nnclass SEWeightModule(nn.Module):def __init__(self, channels, reduction=16):super(SEWeightModule, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)self.relu = nn.ReLU(inplace=True)self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.avg_pool(x)out = self.fc1(out)out = self.relu(out)out = self.fc2(out)weight = self.sigmoid(out)return weightdef conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1, groups=1):"""standard convolution with padding"""return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,padding=padding, dilation=dilation, groups=groups, bias=False)def conv1x1(in_planes, out_planes, stride=1):"""1x1 convolution"""return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)class PSAModule(nn.Module):def __init__(self, inplans, planes, conv_kernels=[3, 5, 7, 9], stride=1, conv_groups=[1, 4, 8, 16]):super(PSAModule, self).__init__()self.conv_1 = conv(inplans, planes//4, kernel_size=conv_kernels[0], padding=conv_kernels[0]//2,stride=stride, groups=conv_groups[0])self.conv_2 = conv(inplans, planes//4, kernel_size=conv_kernels[1], padding=conv_kernels[1]//2,stride=stride, groups=conv_groups[1])self.conv_3 = conv(inplans, planes//4, kernel_size=conv_kernels[2], padding=conv_kernels[2]//2,stride=stride, groups=conv_groups[2])self.conv_4 = conv(inplans, planes//4, kernel_size=conv_kernels[3], padding=conv_kernels[3]//2,stride=stride, groups=conv_groups[3])self.se = SEWeightModule(planes // 4)self.split_channel = planes // 4self.softmax = nn.Softmax(dim=1)def forward(self, x):batch_size = x.shape[0]x1 = self.conv_1(x)x2 = self.conv_2(x)x3 = self.conv_3(x)x4 = self.conv_4(x)feats = torch.cat((x1, x2, x3, x4), dim=1)feats = feats.view(batch_size, 4, self.split_channel, feats.shape[2], feats.shape[3])x1_se = self.se(x1)x2_se = self.se(x2)x3_se = self.se(x3)x4_se = self.se(x4)x_se = torch.cat((x1_se, x2_se, x3_se, x4_se), dim=1)attention_vectors = x_se.view(batch_size, 4, self.split_channel, 1, 1)attention_vectors = self.softmax(attention_vectors)feats_weight = feats * attention_vectorsfor i in range(4):x_se_weight_fp = feats_weight[:, i, :, :]if i == 0:out = x_se_weight_fpelse:out = torch.cat((x_se_weight_fp, out), 1)return out# 测试PSA模块
if __name__ == '__main__':model = PSAModule(inplans=384, planes=384).cuda() # 创建测试模块input = torch.rand(3, 384, 64, 64).cuda()  # 创建随机输入数据output = model(input)  # 前向传播print(output.shape) 

五、结论

EPSANet作为一种高效的金字塔切分注意力网络,通过引入PSA模块,实现了对多尺度空间信息的有效处理和整合。其出色的性能和即插即用的设计使得EPSANet在深度学习领域具有广泛的应用前景。随着研究的深入,我们期待看到更多基于EPSANet的应用和改进,为计算机视觉领域带来更多的创新和突破。

参考资料

论文:EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network

版权声明

本博客内容仅供学习交流,转载请注明出处。

这篇关于EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930801

相关文章

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python