EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】

本文主要是介绍EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

EPSANet:一种高效的金字塔切分注意力网络

一、引言

在深度学习领域,注意力机制已经成为提升卷积神经网络性能的关键技术。其中,一种新型网络结构——EPSANet,通过引入金字塔切分注意力(Pyramid Split Attention, PSA)模块,为注意力机制的研究和应用提供了新的思路。EPSANet不仅在图像识别任务中表现出色,还在计算参数量上实现了高效性。
在这里插入图片描述

二、PSA模块的设计

PSA模块的核心思想在于利用多尺度的输入特征图,提取并整合不同尺度的空间信息,从而建立多尺度通道注意力间的长期依赖关系。具体设计包括以下几个关键步骤:

  1. 分组:将输入特征图按照通道数进行分组,以便在不同尺度上并行处理。
  2. 卷积核大小变化:针对不同尺度的分组,使用不同大小的卷积核进行卷积操作,以捕获不同尺度的空间信息。
  3. 特征图拼接:将不同尺度上的特征图进行拼接,以融合多尺度信息。
  4. SE模块提取通道加权值:通过SE(Squeeze-and-Excitation)模块学习每个通道的权重,实现对通道注意力的调整。在这里插入图片描述
    在这里插入图片描述

这种设计使得EPSANet能够以较低的模型复杂度学习注意力权重,并整合局部和全局注意力,建立长期的通道依赖关系。

三、EPSANet的性能

EPSANet在多个数据集上表现出色,尤其是在图像识别任务中。与SENet-50相比,EPSANet在ImageNet数据集上的Top-1准确率提高了1.93%。此外,在MS-COCO数据集上使用Mask-RCNN时,EPSANet的目标检测box AP提高了2.7,实例分割的mask AP提高了1.7。这些结果充分证明了EPSANet在提升模型性能方面的有效性。
在这里插入图片描述

在这里插入图片描述

即插即用的设计,EPSA模块具有即插即用的特性,可以轻松添加到现有的骨干网络中,无需复杂的修改即可获得显著的性能提升。这种设计理念使得EPSANet能够方便地应用于各种计算机视觉任务,为实际应用提供了极大的便利。

四、相关代码(pytorch)

import torch
import torch.nn as nnclass SEWeightModule(nn.Module):def __init__(self, channels, reduction=16):super(SEWeightModule, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)self.relu = nn.ReLU(inplace=True)self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.avg_pool(x)out = self.fc1(out)out = self.relu(out)out = self.fc2(out)weight = self.sigmoid(out)return weightdef conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1, groups=1):"""standard convolution with padding"""return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,padding=padding, dilation=dilation, groups=groups, bias=False)def conv1x1(in_planes, out_planes, stride=1):"""1x1 convolution"""return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)class PSAModule(nn.Module):def __init__(self, inplans, planes, conv_kernels=[3, 5, 7, 9], stride=1, conv_groups=[1, 4, 8, 16]):super(PSAModule, self).__init__()self.conv_1 = conv(inplans, planes//4, kernel_size=conv_kernels[0], padding=conv_kernels[0]//2,stride=stride, groups=conv_groups[0])self.conv_2 = conv(inplans, planes//4, kernel_size=conv_kernels[1], padding=conv_kernels[1]//2,stride=stride, groups=conv_groups[1])self.conv_3 = conv(inplans, planes//4, kernel_size=conv_kernels[2], padding=conv_kernels[2]//2,stride=stride, groups=conv_groups[2])self.conv_4 = conv(inplans, planes//4, kernel_size=conv_kernels[3], padding=conv_kernels[3]//2,stride=stride, groups=conv_groups[3])self.se = SEWeightModule(planes // 4)self.split_channel = planes // 4self.softmax = nn.Softmax(dim=1)def forward(self, x):batch_size = x.shape[0]x1 = self.conv_1(x)x2 = self.conv_2(x)x3 = self.conv_3(x)x4 = self.conv_4(x)feats = torch.cat((x1, x2, x3, x4), dim=1)feats = feats.view(batch_size, 4, self.split_channel, feats.shape[2], feats.shape[3])x1_se = self.se(x1)x2_se = self.se(x2)x3_se = self.se(x3)x4_se = self.se(x4)x_se = torch.cat((x1_se, x2_se, x3_se, x4_se), dim=1)attention_vectors = x_se.view(batch_size, 4, self.split_channel, 1, 1)attention_vectors = self.softmax(attention_vectors)feats_weight = feats * attention_vectorsfor i in range(4):x_se_weight_fp = feats_weight[:, i, :, :]if i == 0:out = x_se_weight_fpelse:out = torch.cat((x_se_weight_fp, out), 1)return out# 测试PSA模块
if __name__ == '__main__':model = PSAModule(inplans=384, planes=384).cuda() # 创建测试模块input = torch.rand(3, 384, 64, 64).cuda()  # 创建随机输入数据output = model(input)  # 前向传播print(output.shape) 

五、结论

EPSANet作为一种高效的金字塔切分注意力网络,通过引入PSA模块,实现了对多尺度空间信息的有效处理和整合。其出色的性能和即插即用的设计使得EPSANet在深度学习领域具有广泛的应用前景。随着研究的深入,我们期待看到更多基于EPSANet的应用和改进,为计算机视觉领域带来更多的创新和突破。

参考资料

论文:EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network

版权声明

本博客内容仅供学习交流,转载请注明出处。

这篇关于EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930801

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu