LlamaIndex 加 Ollama 实现 Agent

2024-04-24 03:36
文章标签 实现 agent llamaindex ollama

本文主要是介绍LlamaIndex 加 Ollama 实现 Agent,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI Agent 是 AIGC 落地实现的场景之一,与 RAG 不同,RAG 是对数据的扩充,是模型可以学习到新数据或者本地私有数据。AI Agent 是自己推理,自己做,例如你对 AI Agent 说我要知道今天上海的天气怎么样,由于 AI 是个模型,底层通过一套复杂的算法进行相似度的比较,最终选出相似最高的答案,所以模型本身是无法访问网络去获取数据的。如果AIGC 只能回答问题,复杂任务和与外界的沟通还需要人手工处理,就没有发挥出模型应有的能力。所以,AI Agent 做的就是根据具体问题的上下文信息,使用对应的工具得到需要的信息,并最终将信息返回。最典型的场景就是去 Google、百度搜索,模型对结果集进行理解并最终给出结果。我们看到当问 “千问” 天气问题的时候,他是去外部查找信息的。
在这里插入图片描述
通过 LlamaIndex + 本地 Ollama Llama3实现了一个 Agent。

首先安装依赖

pip install llama-index     
pip install llama-index-llms-ollama
pip install python-dotenv 
pip install llama-index-embeddings-huggingface

申请LlamaIndex API

https://cloud.llamaindex.ai/ 申请一个 API Key,使用 Llama Parser 解析 PDF。

Ollama

下载 Ollama3 和 Code Llama,一个模型用于 RAG,一个模型用于生成代码

解析 PDF 并生成 Python 代码

运行以下代码,输入 promote
"read content of test.py and write a python script to call post api to create a new item " 稍等文件就可以生成了。

from llama_index.llms.ollama import Ollama
from llama_parse import LlamaParse
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, PromptTemplate
from llama_index.core.embeddings import resolve_embed_model
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core.agent import ReActAgent
from pydantic import BaseModel
from llama_index.core.output_parsers import PydanticOutputParser
from llama_index.core.query_pipeline import QueryPipeline
from prompts import context, code_parser_template
from code_reader import code_reader
from dotenv import load_dotenv
import os
import astload_dotenv()llm = Ollama(model="llama3", request_timeout=30.0)parser = LlamaParse(result_type="markdown")file_extractor = {".pdf": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor).load_data()embed_model = resolve_embed_model("local:BAAI/bge-m3")
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
query_engine = vector_index.as_query_engine(llm=llm)tools = [QueryEngineTool(query_engine=query_engine,metadata=ToolMetadata(name="api_documentation",description="this gives documentation about code for an API. Use this for reading docs for the API",),),code_reader,
]code_llm = Ollama(model="llama3")
agent = ReActAgent.from_tools(tools, llm=code_llm, verbose=True, context=context)class CodeOutput(BaseModel):code: strdescription: strfilename: strparser = PydanticOutputParser(CodeOutput)
json_prompt_str = parser.format(code_parser_template)
json_prompt_tmpl = PromptTemplate(json_prompt_str)
output_pipeline = QueryPipeline(chain=[json_prompt_tmpl, llm])while (prompt := input("Enter a prompt (q to quit): ")) != "q":retries = 0while retries < 3:try:result = agent.query(prompt)next_result = output_pipeline.run(response=result)cleaned_json = ast.literal_eval(str(next_result).replace("assistant:", ""))breakexcept Exception as e:retries += 1print(f"Error occured, retry #{retries}:", e)if retries >= 3:print("Unable to process request, try again...")continueprint("Code generated")print(cleaned_json["code"])print("\n\nDesciption:", cleaned_json["description"])filename = cleaned_json["filename"]try:with open(os.path.join("output", filename), "w") as f:f.write(cleaned_json["code"])print("Saved file", filename)except:print("Error saving file...")

相关文件上传到资源中了,或者访问git 进行下载 https://gitee.com/wan2000/aiagent。有了 Agent 这个框架感觉可以做很多类型 Agent,比如写数据库SQL、或者做复杂的查查询、接入第三方 API等,接下来我会做些 Agent 看看效果如何 。

这篇关于LlamaIndex 加 Ollama 实现 Agent的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930652

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库