代码随想录day43 | 动态规划P5 | ● 1049. ● 494. ● 474.

2024-04-24 02:12

本文主要是介绍代码随想录day43 | 动态规划P5 | ● 1049. ● 494. ● 474.,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1049. 最后一块石头的重量 II 

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

示例 1:

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40]
输出:5

思路

01背包, 容量M 的背包放 N 件物品, 物品重量wights[N], 价值values[N], 每件物品只能用一次,求解
将哪些物品装入背包里物品价值总和最大。

本题题意: 分割该数组为两份 尽可能均等分割 求这两份之差
        dp五步曲:
①dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。

②递推公式: dp[ j ] = max(dp[ j ], dp[ j - stones[ i ] ] + stones[ i ])

③初始化:dp[ 0 ] 为0 其余因为重量 >= 0 均初始化为0 即可 不会因为初始值影响dp数组的推导

④确定递推顺序:先物品后背包, 内层for循环 倒序

⑤举例推导

最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

代码

class Solution {public int lastStoneWeightII(int[] stones) {//01背包, 容量M 的背包放 N 件物品, 物品重量wights[N], 价值values[N]//每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。//本题 分割该数组为两份 尽可能均等分割 求这两份之差//dp五步曲int sum = Arrays.stream(stones).sum();int [] dp = new int [sum / 2 + 1];for(int i = 0; i < stones.length; i++){
//            System.out.println("i = " + i);for(int j = sum / 2; j >= stones[i]; j--){dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
//                System.out.print(dp[j] + " ");}
//            System.out.println();
//            for(int k = 0; k < dp.length; k++){
//                System.out.print(dp[k] + "|");
//            }
//            System.out.println();}return (sum - dp[sum / 2]) - dp[sum / 2];}
}

494. 目标和 

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

思路

本题求如何使表达式结果为target,

既然为target,那么就一定有

        left组合 - right组合 = target,

        left + right = sum,

而sum是固定的。right = sum - left

公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。

target是固定的,sum是固定的,left就可以求出来。

此时问题就是在集合nums中找出和为left的组合。

回溯

可以套39. 组合总和的代码, 相应博客代码随想录第二十七天 | 回溯算法P3 |● 39. ● 40.● 131.-CSDN博客

C++代码如下:

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {if (sum == target) {result.push_back(path);}// 如果 sum + candidates[i] > target 就终止遍历for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {sum += candidates[i];path.push_back(candidates[i]);backtracking(candidates, target, sum, i + 1);sum -= candidates[i];path.pop_back();}}
public:int findTargetSumWays(vector<int>& nums, int S) {int sum = 0;for (int i = 0; i < nums.size(); i++) sum += nums[i];if (S > sum) return 0; // 此时没有方案if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要各位小心数值溢出的问题int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和// 以下为回溯法代码result.clear();path.clear();sort(nums.begin(), nums.end()); // 需要排序backtracking(nums, bagSize, 0, 0);return result.size();}
};

超时, 可以使用记忆化回溯,但不如用动规

动态规划

        如何转化为01背包问题:

假设加法总和为x, 那么对应减法总和为 sum - x; 此时有 x - (sum - x) = target

那么 x = (sum + target) / 2, 此时问题就转化为,装满容量为x的背包,有几种方法

这里注意若  x = (sum + target) / 2 计算需要向下取整, 实际上是无解的

        回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。本题则是装满有几种方法。其实这就是一个组合问题了。

        动态规划五步曲

①dp数组以及下标含义: dp[j] 表示 装满容量为 j 的背包, 有dp[j]种方法

②递推公式: dp[ j ] += dp[ j - nums[ i ]]

        有哪些来源可以推出dp[j]呢?

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]

这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

有哪些来源可以推出dp[j]呢?

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]

这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

③ 初始化: dp[ 0 ] = 1, 其余=0

从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。 

dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

④递推顺序 先物品(nums)后背包(target) 且内层for循环倒序

⑤举例推导

代码

class Solution {public int findTargetSumWays(int[] nums, int target) {int sum = Arrays.stream(nums).sum();//如果target的绝对值大于sum,那么无解if (Math.abs(target) > sum) return 0;//如果(target+sum)除以2的余数不为0,也是无解if ((sum + target) % 2 == 1) return 0;int left = (sum + target) / 2;int[] dp = new int[left + 1];dp[0] = 1;for (int i = 0; i < nums.length; i++) {for (int j = left; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[left];}
}

474.一和零  

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 1:

输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

输入:strs = ["10", "0", "1"], m = 1, n = 1
输出:2
解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

思路

抽象为01背包问题, 只是物品重量变为二维, 0 的数量 与 1 的数量;

本题中strs 数组里的元素就是物品,每个物品都是一个!而m 和 n相当于是一个背包,两个维度的背包

五步曲完成代码即可

①dp[ i ][ j ] 表示最多有i个0和j个1的strs的最大子集的大小为dp[i][j]

②递推: dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)  其中zeroNum 与 oneNum为某个物品(stars中的元素) 的 0 的个数和 1 的个数

③初始化 首先dp{0][0]  = 0 ,其余元素 均0:因为物品价值不会是负数 为不影响递推公式的推导,

④遍历顺序 同01背包 滚动数组

⑤举例推导

代码

class Solution {public int findMaxForm(String[] strs, int m, int n) {int[][] dp = new int[m + 1][n + 1];//遍历物品for (String str : strs) {int zeroNum = 0, oneNum = 0;for (char c : str.toCharArray()) {if (c == '0') zeroNum++;else oneNum++;}//遍历背包for (int i = m; i >= zeroNum; i--) {for (int j = n; j>= oneNum; j--){dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}}return dp[m][n];}
}

这篇关于代码随想录day43 | 动态规划P5 | ● 1049. ● 494. ● 474.的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930500

相关文章

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Java对接MQTT协议的完整实现示例代码

《Java对接MQTT协议的完整实现示例代码》MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛,:本文主要介绍Ja... 目录前言前置依赖1. MQTT配置类代码解析1.1 MQTT客户端工厂1.2 MQTT消息订阅适配器1.