跟着野火从零开始手搓FreeRTOS(6)多优先级的配置

2024-04-24 00:12

本文主要是介绍跟着野火从零开始手搓FreeRTOS(6)多优先级的配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在 FreeRTOS 中,数字优先级越小,逻辑优先级也越小。

        之前提过,就绪列表其实就是一个数组, 里面存的是就绪任务的TCB(准确来说是 TCB 里面的 xStateListItem 节点),数组的下标对应任务的优先级,优先级越低对应的数组下标越小。空闲任务的优先级最低,对应的下标为 0 。

        任务在创建的时候,会根据任务的优先级将任务插入到就绪列表不同的位置。相同优先级的任务插入到就绪列表里面的同一条链表中,按照时间片轮转的方式交替运行。

        pxCurrenTCB 是一个全局的 TCB 指针,用于当前正在运行的 TCB 。所以想要实现优先级,只要在任务切换的时候让 pxCurrenTCB 指向最高优先级的就绪任务的 TCB 即可。

        FreeRTOS 提供了两种方法,一套是通用的,一套是根据特定的处理器优化过的。

前期变量定义

        首先需要定义空闲任务的优先级,还要定义一个表示创建任务的最高优先级的静态变量uxTopReadyPriority,默认这个变量的值为0,即空闲任务的优先级。

/* 空闲任务的优先级,task.h定义 */
#define tskIDLE_PRIORITY			       ( ( UBaseType_t ) 0U )
/* uxTopReadyPriority,定义task.c定义 */
static volatile UBaseType_t uxTopReadyPriority 		= tskIDLE_PRIORITY;

    通用方法

        寻找优先级的实现在 task.c 中实现。

        寻找最高优先级的方法通过宏configUSE_PORT_OPTIMISED_TASK_SELECTION来控制,为0是通用方法,1是优化方法。这个宏在 portmacro.h 中定义为1。 

获取最高优先级函数taskRECORD_READY_PRIORITY()

        调用taskRECORD_READY_PRIORITY()来更新uxTopReadyPriority的值,获得最高优先级。之后将通过uxTopReadyPriority的值,来确定就绪任务。

/* 查找最高优先级的就绪任务:通用方法 */                                    
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )#define taskRECORD_READY_PRIORITY( uxPriority )														\{																									\if( ( uxPriority ) > uxTopReadyPriority )														\{																								\uxTopReadyPriority = ( uxPriority );														\}																								\} #define taskSELECT_HIGHEST_PRIORITY_TASK()															\{																									\UBaseType_t uxTopPriority = uxTopReadyPriority;														\\/* 寻找包含就绪任务的最高优先级的队列 */                                                          \while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) )							\{																								\--uxTopPriority;																			\}																								\\/* 获取优先级最高的就绪任务的TCB,然后更新到pxCurrentTCB */							            \listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );			\/* 更新uxTopReadyPriority */                                                                    \uxTopReadyPriority = uxTopPriority;																\} /* taskSELECT_HIGHEST_PRIORITY_TASK */

 寻找最高优先级就绪任务taskSELECT_HIGHEST_PRIORITY_TASK()

         taskSELECT_HIGHEST_PRIORITY_TASK()实现寻找最高优先级任务的功能,将uxTopReadyPriority和pxCurrentTCB 的值更新为优先级最高的就绪任务对应的值。

        这个函数首先将上一步获取的最大优先级取出来,通过while循环判断当前优先级对应的链表里有没有任务。因为FreeRTOS的优先级越小,对应的数字越小,所以如果检测不到当前链表下的任务,那么就让优先级减一再去进行判断。循环往复,直到检测到链表中的任务为止,跳出循环。

        之后获取这个任务的TCB,更新uxTopReadyPriority和pxCurrentTCB的值,至此确定好了优先级。

优化方法

        这里还是借用野火的图和例子:

        Cortex-M内核有一个计算前导零的指令CLZ,所谓前导零就是计算一个变量从高位开始第一次出现 1 的位的前面的零的个数。 比如: 一个 32 位的变量 uxTopReadyPriority, 其位 0、位 24 和 位 25 均 置 1 , 其 余 位 为 0 。 那 么 使 用 前 导 零 指 令 __CLZ (uxTopReadyPriority)可以很快的计算出 uxTopReadyPriority 的前导零的个数为 6。

        如果 uxTopReadyPriority 的每个位号对应的是任务的优先级,任务就绪时,则将对应的位置 1,反之则清零。那么上述例子中优先级 0、优先级 24 和优先级 25 这三个任务中优先级为 25 的任务优先级最高。利用前导零计算指令可以很快计算出就绪任务中的最高优先级为:

( 31UL  -  ( uint32_t ) __clz( ( uxReadyPriorities ) ) ) = ( 31UL - ( uint32_t ) 6 ) = 25。

        概括来讲,优化方法就是用位数-1来减去前导零的个数来得到最高优先级。

        首先在portmacro.h中定义需要的两个函数并根据优先级修改相应的位。

define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )

优先级修改函数taskRECORD_READY_PRIORITY()与taskRESET_READY_PRIORITY()

        taskRECORD_READY_PRIORITY()可以根据传入的形参(一般就是任务的优先级)将uxTopReadyPriority的某个位置1,通过上述例子提到的方法,通过计算前导零的个数来得到最高优先级。taskRESET_READY_PRIORITY()则与之相反,它会将某个位清0。

        需要注意的是,taskRESET_READY_PRIORITY()清0前要先保证就绪列表中对应优先级下的链表中没有任务。

        之后使用taskSELECT_HIGHEST_PRIORITY_TASK()寻找最高优先级就绪任务。这个函数实现的功能和通用方法的基本一致,只不过这里是将最高优先级存到局部变量uxTopPriority中。

/* 这两个宏定义只有在选择优化方法时才用,这里定义为空 */#define taskRESET_READY_PRIORITY( uxPriority )#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )/* 查找最高优先级的就绪任务:根据处理器架构优化后的方法 */
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */#define taskRECORD_READY_PRIORITY( uxPriority )	portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )/*-----------------------------------------------------------*/#define taskSELECT_HIGHEST_PRIORITY_TASK()														    \{																								    \UBaseType_t uxTopPriority;																		    \\/* 寻找最高优先级 */								                            \portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority );								    \/* 获取优先级最高的就绪任务的TCB,然后更新到pxCurrentTCB */                                       \listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );		    \} /* taskSELECT_HIGHEST_PRIORITY_TASK() *//*-----------------------------------------------------------*/
#if 0#define taskRESET_READY_PRIORITY( uxPriority )														\{																									\if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 )	\{																								\portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );							\}																								\}
#else#define taskRESET_READY_PRIORITY( uxPriority )											            \{																							        \portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );					        \}
#endif#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */

这篇关于跟着野火从零开始手搓FreeRTOS(6)多优先级的配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930260

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于