跟着野火从零开始手搓FreeRTOS(6)多优先级的配置

2024-04-24 00:12

本文主要是介绍跟着野火从零开始手搓FreeRTOS(6)多优先级的配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在 FreeRTOS 中,数字优先级越小,逻辑优先级也越小。

        之前提过,就绪列表其实就是一个数组, 里面存的是就绪任务的TCB(准确来说是 TCB 里面的 xStateListItem 节点),数组的下标对应任务的优先级,优先级越低对应的数组下标越小。空闲任务的优先级最低,对应的下标为 0 。

        任务在创建的时候,会根据任务的优先级将任务插入到就绪列表不同的位置。相同优先级的任务插入到就绪列表里面的同一条链表中,按照时间片轮转的方式交替运行。

        pxCurrenTCB 是一个全局的 TCB 指针,用于当前正在运行的 TCB 。所以想要实现优先级,只要在任务切换的时候让 pxCurrenTCB 指向最高优先级的就绪任务的 TCB 即可。

        FreeRTOS 提供了两种方法,一套是通用的,一套是根据特定的处理器优化过的。

前期变量定义

        首先需要定义空闲任务的优先级,还要定义一个表示创建任务的最高优先级的静态变量uxTopReadyPriority,默认这个变量的值为0,即空闲任务的优先级。

/* 空闲任务的优先级,task.h定义 */
#define tskIDLE_PRIORITY			       ( ( UBaseType_t ) 0U )
/* uxTopReadyPriority,定义task.c定义 */
static volatile UBaseType_t uxTopReadyPriority 		= tskIDLE_PRIORITY;

    通用方法

        寻找优先级的实现在 task.c 中实现。

        寻找最高优先级的方法通过宏configUSE_PORT_OPTIMISED_TASK_SELECTION来控制,为0是通用方法,1是优化方法。这个宏在 portmacro.h 中定义为1。 

获取最高优先级函数taskRECORD_READY_PRIORITY()

        调用taskRECORD_READY_PRIORITY()来更新uxTopReadyPriority的值,获得最高优先级。之后将通过uxTopReadyPriority的值,来确定就绪任务。

/* 查找最高优先级的就绪任务:通用方法 */                                    
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )#define taskRECORD_READY_PRIORITY( uxPriority )														\{																									\if( ( uxPriority ) > uxTopReadyPriority )														\{																								\uxTopReadyPriority = ( uxPriority );														\}																								\} #define taskSELECT_HIGHEST_PRIORITY_TASK()															\{																									\UBaseType_t uxTopPriority = uxTopReadyPriority;														\\/* 寻找包含就绪任务的最高优先级的队列 */                                                          \while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) )							\{																								\--uxTopPriority;																			\}																								\\/* 获取优先级最高的就绪任务的TCB,然后更新到pxCurrentTCB */							            \listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );			\/* 更新uxTopReadyPriority */                                                                    \uxTopReadyPriority = uxTopPriority;																\} /* taskSELECT_HIGHEST_PRIORITY_TASK */

 寻找最高优先级就绪任务taskSELECT_HIGHEST_PRIORITY_TASK()

         taskSELECT_HIGHEST_PRIORITY_TASK()实现寻找最高优先级任务的功能,将uxTopReadyPriority和pxCurrentTCB 的值更新为优先级最高的就绪任务对应的值。

        这个函数首先将上一步获取的最大优先级取出来,通过while循环判断当前优先级对应的链表里有没有任务。因为FreeRTOS的优先级越小,对应的数字越小,所以如果检测不到当前链表下的任务,那么就让优先级减一再去进行判断。循环往复,直到检测到链表中的任务为止,跳出循环。

        之后获取这个任务的TCB,更新uxTopReadyPriority和pxCurrentTCB的值,至此确定好了优先级。

优化方法

        这里还是借用野火的图和例子:

        Cortex-M内核有一个计算前导零的指令CLZ,所谓前导零就是计算一个变量从高位开始第一次出现 1 的位的前面的零的个数。 比如: 一个 32 位的变量 uxTopReadyPriority, 其位 0、位 24 和 位 25 均 置 1 , 其 余 位 为 0 。 那 么 使 用 前 导 零 指 令 __CLZ (uxTopReadyPriority)可以很快的计算出 uxTopReadyPriority 的前导零的个数为 6。

        如果 uxTopReadyPriority 的每个位号对应的是任务的优先级,任务就绪时,则将对应的位置 1,反之则清零。那么上述例子中优先级 0、优先级 24 和优先级 25 这三个任务中优先级为 25 的任务优先级最高。利用前导零计算指令可以很快计算出就绪任务中的最高优先级为:

( 31UL  -  ( uint32_t ) __clz( ( uxReadyPriorities ) ) ) = ( 31UL - ( uint32_t ) 6 ) = 25。

        概括来讲,优化方法就是用位数-1来减去前导零的个数来得到最高优先级。

        首先在portmacro.h中定义需要的两个函数并根据优先级修改相应的位。

define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )

优先级修改函数taskRECORD_READY_PRIORITY()与taskRESET_READY_PRIORITY()

        taskRECORD_READY_PRIORITY()可以根据传入的形参(一般就是任务的优先级)将uxTopReadyPriority的某个位置1,通过上述例子提到的方法,通过计算前导零的个数来得到最高优先级。taskRESET_READY_PRIORITY()则与之相反,它会将某个位清0。

        需要注意的是,taskRESET_READY_PRIORITY()清0前要先保证就绪列表中对应优先级下的链表中没有任务。

        之后使用taskSELECT_HIGHEST_PRIORITY_TASK()寻找最高优先级就绪任务。这个函数实现的功能和通用方法的基本一致,只不过这里是将最高优先级存到局部变量uxTopPriority中。

/* 这两个宏定义只有在选择优化方法时才用,这里定义为空 */#define taskRESET_READY_PRIORITY( uxPriority )#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )/* 查找最高优先级的就绪任务:根据处理器架构优化后的方法 */
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */#define taskRECORD_READY_PRIORITY( uxPriority )	portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )/*-----------------------------------------------------------*/#define taskSELECT_HIGHEST_PRIORITY_TASK()														    \{																								    \UBaseType_t uxTopPriority;																		    \\/* 寻找最高优先级 */								                            \portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority );								    \/* 获取优先级最高的就绪任务的TCB,然后更新到pxCurrentTCB */                                       \listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );		    \} /* taskSELECT_HIGHEST_PRIORITY_TASK() *//*-----------------------------------------------------------*/
#if 0#define taskRESET_READY_PRIORITY( uxPriority )														\{																									\if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 )	\{																								\portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );							\}																								\}
#else#define taskRESET_READY_PRIORITY( uxPriority )											            \{																							        \portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );					        \}
#endif#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */

这篇关于跟着野火从零开始手搓FreeRTOS(6)多优先级的配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930260

相关文章

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

maven私服配置全过程

《maven私服配置全过程》:本文主要介绍maven私服配置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录使用Nexus作为 公司maven私服maven 私服setttings配置maven项目 pom配置测试效果总结使用Nexus作为 公司maven私

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

CentOS 7 YUM源配置错误的解决方法

《CentOS7YUM源配置错误的解决方法》在使用虚拟机安装CentOS7系统时,我们可能会遇到YUM源配置错误的问题,导致无法正常下载软件包,为了解决这个问题,我们可以替换YUM源... 目录一、备份原有的 YUM 源配置文件二、选择并配置新的 YUM 源三、清理旧的缓存并重建新的缓存四、验证 YUM 源

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压