重参数化(Reparameterization)的原理

2024-04-24 00:12

本文主要是介绍重参数化(Reparameterization)的原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重参数化(Reparameterization)的原理

重参数化是变分自编码器(VAE)中用来解决可微分性问题的一种技术。在VAE中,我们的目标是最大化观测数据的边缘对数似然,这涉及到一个隐含变量 z z z的积分或求和。因为隐含变量是从某个分布中采样的,这直接导致了当我们尝试使用梯度下降方法优化VAE的参数时,由于采样操作的随机性,无法直接对其求导。

重参数化技巧通过将随机采样过程转换为确定性的操作来解决这一问题。具体来说,它将随机变量 z z z的采样过程分解为两步:

  1. 从一个固定的分布(通常是标准正态分布)中采样一个辅助噪声变量 ϵ \epsilon ϵ
  2. 通过一个可微的变换将 ϵ \epsilon ϵ映射到隐变量 z z z

这样,原本依赖于随机采样的模型输出现在变成了依赖于确定性函数的输出,使得整个模型关于其参数可微,从而可以通过标准的反向传播算法进行优化。

功能

  • 允许反向传播:通过使用重参数化技巧,VAE的训练过程可以利用基于梯度的优化算法,如SGD或Adam,因为所有操作都是可微的。
  • 改善训练稳定性:将随机性限制在输入端(噪声 ϵ \epsilon ϵ),而不是模型的中间,有助于提高模型训练的稳定性和收敛速度。
  • 支持更复杂的概率模型:这种技巧使得模型可以学习复杂的数据分布,同时保持模型的可训练性。

Python 示例

下面是使用PyTorch实现的VAE中应用重参数化技巧的简单示例:

import torch
from torch import nn
import torch.nn.functional as Fclass VAE(nn.Module):def __init__(self):super(VAE, self).__init__()self.fc1 = nn.Linear(784, 400)  # 输入特征到隐层self.fc21 = nn.Linear(400, 20)  # 隐层到均值self.fc22 = nn.Linear(400, 20)  # 隐层到log方差self.fc3 = nn.Linear(20, 400)   # 隐层到输出self.fc4 = nn.Linear(400, 784)  # 输出层def encode(self, x):h1 = F.relu(self.fc1(x))return self.fc21(h1), self.fc22(h1)def reparameterize(self, mu, logvar):std = torch.exp(0.5*logvar)eps = torch.randn_like(std)return mu + eps*stddef decode(self, z):h3 = F.relu(self.fc3(z))return torch.sigmoid(self.fc4(h3))def forward(self, x):mu, logvar = self.encode(x.view(-1, 784))z = self.reparameterize(mu, logvar)return self.decode(z), mu, logvar# 损失函数和训练代码在这里省略,只关注模型结构和重参数化部分。

在这个示例中,reparameterize 函数接收从编码器生成的均值和对数方差,然后生成一个随机样本 z,该样本符合由均值 mu 和方差 exp(logvar) 定义的正态分布。这个过程使得模型在训练过程中能够通过梯度下

降法进行优化。

其他参考:

漫谈重参数:从正态分布到Gumbel Softmax。
Categorical Reparameterization with Gumbel-Softmax

这篇关于重参数化(Reparameterization)的原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930258

相关文章

Java线程池核心参数原理及使用指南

《Java线程池核心参数原理及使用指南》本文详细介绍了Java线程池的基本概念、核心类、核心参数、工作原理、常见类型以及最佳实践,通过理解每个参数的含义和工作原理,可以更好地配置线程池,提高系统性能,... 目录一、线程池概述1.1 什么是线程池1.2 线程池的优势二、线程池核心类三、ThreadPoolE

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

SpringMVC配置、映射与参数处理​入门案例详解

《SpringMVC配置、映射与参数处理​入门案例详解》文章介绍了SpringMVC框架的基本概念和使用方法,包括如何配置和编写Controller、设置请求映射规则、使用RestFul风格、获取请求... 目录1.SpringMVC概述2.入门案例①导入相关依赖②配置web.XML③配置SpringMVC

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS