无人驾驶 自动驾驶汽车 环境感知 精准定位 决策与规划 控制与执行 高精地图与车联网V2X 深度神经网络学习 深度强化学习 Apollo

本文主要是介绍无人驾驶 自动驾驶汽车 环境感知 精准定位 决策与规划 控制与执行 高精地图与车联网V2X 深度神经网络学习 深度强化学习 Apollo,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

无人驾驶

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

百度apollo课程 1-5

百度apollo课程 6-8

七月在线 无人驾驶系列知识入门到提高

当今,自动驾驶技术已经成为整个汽车产业的最新发展方向。应用自动驾驶技术可以全面提升汽车驾驶的安全性、舒适性,满足更高层次的市场需求等。自动驾驶技术得益于人工智能技术的应用及推广,在环境感知、精准定位、决策与规划、控制与执行、高精地图与车联网V2X 等方面实现了全面提升。科研院校、汽车制造厂商、科技公司、自动驾驶汽车创业公司以及汽车零部件供应商在自动驾驶技术领域进行不断地探索,寻求通过人工智能技术来获得技术上的新突破。

自动驾驶汽车(Automated Vehicle;Intelligent Vehicle;Autonomous Vehicle;Self-drivingCar;Driverless Car)又称智能汽车、自主汽车、自动驾驶汽车或轮式移动机器人,是一种通过计算机实现自动驾驶的智能汽车。

自动驾驶汽车等级标准,SAE J3016 标准(Level0~Level 5 共6 个级别)、

  • Level 0:无自动化,由人类驾驶员全程操控汽车,但可以得到示警式或须干预的辅助信息。
  • Level 1:辅助驾驶,利用环境感知信息对转向或纵向加减速进行闭环控制,其余工作由人类驾驶员完成。
  • Level 2:部分自动化,利用环境感知信息同时对转向和纵向加减速进行闭环控制,其余工作由人类驾驶员完成。
  • Level 3:有条件自动化,由自动驾驶系统完成所有驾驶操作,人类驾驶员根据系统请求进行干预。
  • Level 4:高度自动化,由自动驾驶系统完成所有驾驶操作,无需人类驾驶员进行任何干预,但须限定道路和功能。
  • Level 5:完全自动化,由自动驾驶系统完成所有的驾驶操作,人类驾驶员能够应付的所有道路和环境,系统也能完全自动完成。

目前对于自动驾驶汽车的研究有两条不同的技术路线:一条是渐进提高汽车驾驶的自动化水平;另一条是“一步到位”的无人驾驶技术发展路线。由SAE J3016 标准可以看出,通常大家谈论的无人驾驶汽车对应该标准的Level 4 和Level 5 级。无人驾驶汽车是自动驾驶的一种表现形式,它具有整个道路环境中所有与车辆安全性相关的控制功能,不需要驾驶员对车辆实施控制。

〉 自动驾驶技术的价值

    1. 改善交通安全。驾驶员的过失责任是交通事故的主要因素。无人驾驶汽车不受人的心理和情绪干扰,保证遵守交通法规,按照规划路线行驶,可以有效地减少人为疏失所造成的交通事故。
    1. 实现节能减排。由于通过合理调度实现共享享出行,减少了私家车购买数量,车辆绝对量的减少,将使温室气体排量大幅降低。
    1. 消除交通拥堵,提升社会效率。自动驾驶汽车可以通过提高车速、缩小车距以及选择更有效路线来减少通勤所耗时间。
    1. 个人移动能力更加便利,不再需要找停车场。
    1. 拉动汽车、电子、通信、服务、社会管理等协同发展,对促进我国产业转型升级具有重大战略意义。

实战

自动驾驶汽车关键技术包括环境感知、精准定位、决策与规划、控制与执行、高精地图与车联网V2X 以及自动驾驶汽车测试与验证技术;人工智能在自动驾驶汽车中的应用包括人工智能在环境感知中的应用、人工智能在决策规划中的应用、人工智能在车辆控制中的应用。

计算机视觉(处理摄像头,分割、检测、识别)定位(算法+HD MAP)   路径规划  控制
传感器融合fusion(激光雷达等)以百度apollo 无人驾驶平台介绍相关的技术
  1. 感知
  2. 定位
  3. 规划
  4. 控制
  5. 高精度地图和车联网 基础设施

comma.ai(无人驾驶公司)的这两千行Python/tf代码 Learning a Driving Simulator

openpilot 一个开源的自动驾驶(驾驶代理),它实行 Hondas 和 Acuras 的自适应巡航控制(ACC)和车道保持辅助系统(LKAS)的功能。

Autoware

udacity/self-driving-car

第六十八篇:从ADAS到自动驾驶(一):自动驾驶发展及分级

1.环境感知,起着人类驾驶员“眼睛”“耳朵”的作用

  • 摄像机可以识别车辆行驶环境中的车辆、行人、车道线、路标、交通标志、交通信号灯等。它具有较高的图像稳定性、抗干扰能力和传输能力等特点。
  • 激光雷达是以发射激光束来探测目标空间位置的主动测量设备。
  • 毫米波雷达是指工作在毫米波波段、频率在30—300GHz 之间的雷达。根据测量原理的不同,毫米波雷达可分为脉冲方式毫米波雷达和调频连续波方式毫米波雷达两种。
  • 超声波雷达的数据处理简单快速,检测距离较短,多用于近距离障碍物检测。

目前,环境感知技术有两种技术路线,一种是以摄像机为主导的多传感器融合方案,典型代表是特斯拉。另一种是以激光雷达为主导,其他传感器为辅助的技术方案,典型企业代表如谷歌、百度等。

摄像机捕获图像(RGB图像) -> 预处理(缩放、旋转、格式转换) -> 提取特征 -> 物体检测/分类/语义分割/识别等

激光雷达捕获距离数据(点云数据) -> 预处理(PCL点云处理,降采样,聚类分割等) -> 提取特征(形状、表面纹理) -> 三维检测框(三维框+类别)

后两步,现在一般使用DCNN深度神经网络来实现。

检测 -> 跟踪(连续帧,检测出的物体匹配关联(利用局部二值模式特征/方向梯度直方图等特征进行匹配)) -> 判断速度(辅助雷达数据(三维点云数据,含有精确的距离信息)) -> 预测物体轨迹(未来的速度和位置)
-> 检测出 动态物体 和 车道线 -> 用于规划和决策

透视变换 和 滑动窗口跟踪

语义分割理解环境障碍物道路等,CNN卷积网络编码得到特征 -> 反卷积(或池化索引上采样+卷积)解码网络

高精度地图中,设定ROI感兴趣三维(点云)/二维(图像)区域,以缩小 查询匹配范围,加快感知,实际检测的静态物体(交通灯等)会在HD map中查找,辅助实际环境中的感知过程

相机 雷达radar 激光雷达LiDAR 在各种使用场景和环境下个有优缺点,所以需要结合他们的优点,达到在各种场景中最优,所以需要传感器融合技术

雷达radar 激光雷达LiDAR 检测障碍物,传感器融合的算法为 卡尔曼滤波(预测+测量误差更新)

数据同步融合 / 数据异步融合

有数据级融合,特征级融合,目标级融合,应用于不同的场景,融合策略就不同。

2.精准定位

  • 惯性导航系统由陀螺仪和加速度计构成,通过测量运动载体的线加速度和角速率数据,并将这些数据对时间进行积分运算,从而得到速度、位置和姿态。

车辆速度 时间 初始位置 和 初始速度 车辆加速度。

短时间内准确,长时间内,由于IMU数据飘逸,变得的不准确,可以和GPS结合

  • 轮速编码器与航迹推算.可以通过轮速编码器推算出自动驾驶汽车的位置。通常

这篇关于无人驾驶 自动驾驶汽车 环境感知 精准定位 决策与规划 控制与执行 高精地图与车联网V2X 深度神经网络学习 深度强化学习 Apollo的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928694

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired