手写一个自己的LocalCache - 基于LinkedHashMap实现LRU

2024-04-22 23:32

本文主要是介绍手写一个自己的LocalCache - 基于LinkedHashMap实现LRU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

功能目标

实现一个全局范围的LocalCache,各个业务点使用自己的Namespace对LocalCache进行逻辑分区,所以在LocalCache中进行读写采用的key为(namespace+(分隔符)+数据key),如存在以下的一对keyValue :  NameToAge,Troy -> 23 。要求LocalCache线程安全,且LocalCache中总keyValue数量可控,提供清空,调整大小,dump到本地文件等一系列操作。

用LinkedHashMap实现LRU Map

LinkedHashMap提供了键值对的储存功能,且可根据其支持访问排序的特性来模拟LRU算法。简单来说,LinkedHashMap在访问已存在元素或插入新元素时,会将该元素放置在链表的尾部,所以在链表头部的元素是最近最少未使用的元素,而这正是LRU算法的描述。由于其底层基于链表实现,所以对于元素的移动和插入操作性能表现优异。我们将利用一个LinkedHashMap实现一个线程安全的LRU Map。

LRU Map的实现

public class LRUMap<T> extends LinkedHashMap<String, SoftReference<T>> implements Externalizable {private static final long serialVersionUID = -7076355612133906912L;/** The maximum size of the cache. */private int maxCacheSize;/* lock for map */private final Lock lock = new ReentrantLock();/*** 默认构造函数,LRUMap的大小为Integer.MAX_VALUE*/public LRUMap() {super();maxCacheSize = Integer.MAX_VALUE;}/*** Constructs a new, empty cache with the specified maximum size.*/public LRUMap(int size) {super(size + 1, 1f, true);maxCacheSize = size;}/*** 让LinkHashMap支持LRU,如果Map的大小超过了预定值,则返回true,LinkedHashMap自身实现返回* fasle,即永远不删除元素*/@Overrideprotected boolean removeEldestEntry(Map.Entry<String, SoftReference<T>> eldest) {boolean tmp = (size() > maxCacheSize);return tmp;}public T addEntry(String key, T entry) {try {SoftReference<T> sr_entry = new SoftReference<T>(entry);// add entry to hashmaplock.lock();put(key, sr_entry);}finally {lock.unlock();}return entry;}public T getEntry(String key) {SoftReference<T> sr_entry;try {lock.lock();if ((sr_entry = get(key)) == null)return null;// if soft reference is null then the entry has been// garbage collected and so the key should be removed also.if (sr_entry.get() == null) {remove(key);return null;}}finally {lock.unlock();}return sr_entry.get();}@Overridepublic SoftReference<T> remove(Object key) {try {lock.lock();return super.remove(key);}finally {lock.unlock();}}@Overridepublic synchronized void clear() {super.clear();}public void writeExternal(ObjectOutput out) throws IOException {Iterator<Map.Entry<String, SoftReference<T>>> i = (size() > 0) ? entrySet().iterator() : null;// Write out sizeout.writeInt(size());// Write out keys and valuesif (i != null) {while (i.hasNext()) {Map.Entry<String, SoftReference<T>> e = i.next();if (e != null && e.getValue() != null && e.getValue().get() != null) {out.writeObject(e.getKey());out.writeObject(e.getValue().get());}}}}public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {// Read in sizeint size = in.readInt();// Read the keys and values, and put the mappings in the Mapfor (int i = 0; i < size; i++) {String key = (String) in.readObject();@SuppressWarnings("unchecked")T value = (T) in.readObject();addEntry(key, value);}}}
   

LocalCache设计

如果在LocalCache中只使用一个LRU Map,将产生性能问题:1. 单个LinkedHashMap中元素数量太多 2. 高并发下读写锁限制。
所以可以在LocalCache中使用多个LRU Map,并使用key 来 hash到某个LRU Map上,以此来提高在单个LinkedHashMap中检索的速度以及提高整体并发度。

LocalCache实现

这里hash选用了Wang/Jenkins hash算法。实现Hash的方式参考了ConcurrentHashMap的实现。
public class LocalCache{private final int size;/*** 本地缓存最大容量*/static final int MAXIMUM_CAPACITY = 1 << 30;/*** 本地缓存支持最大的分区数*/static final int MAX_SEGMENTS = 1 << 16; // slightly conservative/*** 本地缓存存储的LRUMap数组*/LRUMap<CacheObject>[] segments;/*** Mask value for indexing into segments. The upper bits of a key's hash* code are used to choose the segment.*/int segmentMask;/*** Shift value for indexing within segments.*/int segmentShift;/*** * 计数器重置阀值*/private static final int MAX_LOOKUP = 100000000;/*** 用于重置计数器的锁,防止多次重置计数器*/private final Lock lock = new ReentrantLock();/*** Number of requests made to lookup a cache entry.*/private AtomicLong lookup = new AtomicLong(0);/*** Number of successful requests for cache entries.*/private AtomicLong found = new AtomicLong(0);public LocalCacheServiceImpl(int size) {this.size = size;}public CacheObject get(String key) {if (StringUtils.isBlank(key)) {return null;}// 增加计数器lookup.incrementAndGet();// 如果必要重置计数器if (lookup.get() > MAX_LOOKUP) {if (lock.tryLock()) {try {lookup.set(0);found.set(0);}finally {lock.unlock();}}}int hash = hash(key.hashCode());CacheObject ret = segmentFor(hash).getEntry(key);if (ret != null)found.incrementAndGet();return ret;}public void remove(String key) {if (StringUtils.isBlank(key)) {return;}int hash = hash(key.hashCode());segmentFor(hash).remove(key);return;}public void put(String key, CacheObject val) {if (StringUtils.isBlank(key) || val == null) {return;}int hash = hash(key.hashCode());segmentFor(hash).addEntry(key, val);return;}public synchronized void clearCache() {for (int i = 0; i < segments.length; ++i)segments[i].clear();}public synchronized void reload() throws Exception {clearCache();init();}public synchronized void dumpLocalCache() throws Exception {for (int i = 0; i < segments.length; ++i) {String tmpDir = System.getProperty("java.io.tmpdir");String fileName = tmpDir + File.separator + "localCache-dump-file" + i + ".cache";File file = new File(fileName);ObjectUtils.objectToFile(segments[i], file);}}@SuppressWarnings("unchecked")public synchronized void restoreLocalCache() throws Exception {for (int i = 0; i < segments.length; ++i) {String tmpDir = System.getProperty("java.io.tmpdir");String fileName = tmpDir + File.separator + "localCache-dump-file" + i + ".cache";File file = new File(fileName);LRUMap<CacheObject> lruMap = (LRUMap<CacheObject>) ObjectUtils.fileToObject(file);if (lruMap != null) {Set<Entry<String, SoftReference<CacheObject>>> set = lruMap.entrySet();Iterator<Entry<String, SoftReference<CacheObject>>> it = set.iterator();while (it.hasNext()) {Entry<String, SoftReference<CacheObject>> entry = it.next();if (entry.getValue() != null && entry.getValue().get() != null)segments[i].addEntry(entry.getKey(), entry.getValue().get());}}}}/*** 本地缓存命中次数,在计数器RESET的时刻可能会出现0的命中率*/public int getHitRate() {long query = lookup.get();return query == 0 ? 0 : (int) ((found.get() * 100) / query);}/*** 本地缓存访问次数,在计数器RESET时可能会出现0的查找次数*/public long getCount() {return lookup.get();}public int size() {final LRUMap<CacheObject>[] segments = this.segments;long sum = 0;for (int i = 0; i < segments.length; ++i) {sum += segments[i].size();}if (sum > Integer.MAX_VALUE)return Integer.MAX_VALUE;elsereturn (int) sum;}/*** Returns the segment that should be used for key with given hash* * @param hash*            the hash code for the key* @return the segment*/final LRUMap<CacheObject> segmentFor(int hash) {return segments[(hash >>> segmentShift) & segmentMask];}/* ---------------- Small Utilities -------------- *//*** Applies a supplemental hash function to a given hashCode, which defends* against poor quality hash functions. This is critical because* ConcurrentHashMap uses power-of-two length hash tables, that otherwise* encounter collisions for hashCodes that do not differ in lower or upper* bits.*/private static int hash(int h) {// Spread bits to regularize both segment and index locations,// using variant of single-word Wang/Jenkins hash.h += (h << 15) ^ 0xffffcd7d;h ^= (h >>> 10);h += (h << 3);h ^= (h >>> 6);h += (h << 2) + (h << 14);return h ^ (h >>> 16);}@SuppressWarnings("unchecked")public void init() throws Exception {int concurrencyLevel = 16;int capacity = size;if (capacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();if (concurrencyLevel > MAX_SEGMENTS)concurrencyLevel = MAX_SEGMENTS;// Find power-of-two sizes best matching argumentsint sshift = 0;int ssize = 1;while (ssize < concurrencyLevel) {++sshift;ssize <<= 1;}segmentShift = 32 - sshift;segmentMask = ssize - 1;this.segments = new LRUMap[ssize];if (capacity > MAXIMUM_CAPACITY)capacity = MAXIMUM_CAPACITY;int c = capacity / ssize;if (c * ssize < capacity)++c;int cap = 1;while (cap < c)cap <<= 1;cap >>= 1;for (int i = 0; i < this.segments.length; ++i)this.segments[i] = new LRUMap<CacheObject>(cap);}
}


这篇关于手写一个自己的LocalCache - 基于LinkedHashMap实现LRU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927162

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

MyBatisX逆向工程的实现示例

《MyBatisX逆向工程的实现示例》本文主要介绍了MyBatisX逆向工程的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录逆向工程准备好数据库、表安装MyBATisX插件项目连接数据库引入依赖pom.XML生成实体类、

C#实现查找并删除PDF中的空白页面

《C#实现查找并删除PDF中的空白页面》PDF文件中的空白页并不少见,因为它们有可能是作者有意留下的,也有可能是在处理文档时不小心添加的,下面我们来看看如何使用Spire.PDFfor.NET通过C#... 目录安装 Spire.PDF for .NETC# 查找并删除 PDF 文档中的空白页C# 添加与删

Java实现MinIO文件上传的加解密操作

《Java实现MinIO文件上传的加解密操作》在云存储场景中,数据安全是核心需求之一,MinIO作为高性能对象存储服务,支持通过客户端加密(CSE)在数据上传前完成加密,下面我们来看看如何通过Java... 目录一、背景与需求二、技术选型与原理1. 加密方案对比2. 核心算法选择三、完整代码实现1. 加密上

Java使用WebView实现桌面程序的技术指南

《Java使用WebView实现桌面程序的技术指南》在现代软件开发中,许多应用需要在桌面程序中嵌入Web页面,例如,你可能需要在Java桌面应用中嵌入一部分Web前端,或者加载一个HTML5界面以增强... 目录1、简述2、WebView 特点3、搭建 WebView 示例3.1 添加 JavaFX 依赖3