sklearn【MSE】均方误差,原理及学习代码!

2024-04-22 20:04

本文主要是介绍sklearn【MSE】均方误差,原理及学习代码!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、MSE 介绍

均方误差(Mean Squared Error,MSE)是回归问题中常用的一个评估指标,它通过计算预测值与实际值之间差异的平方的平均值来评估模型的精度。

在Python的机器学习库sklearn中,我们可以使用内置的mean_squared_error函数来计算MSE。

具体来说,MSE的计算步骤如下:

  1. 收集数据:首先,我们需要一组包含实际目标值(真实值)和模型预测值的数据集。这些数据通常来自测试集,用于评估模型在未见过的数据上的性能。
  2. 计算残差:对于数据集中的每一对实际值和预测值,我们计算它们之间的差值,这个差值被称为残差(residual)。残差反映了模型预测与实际结果之间的偏差。
  3. 计算残差平方:接下来,我们对每个残差进行平方。这一步是为了消除负值的影响,因为我们关心的是偏差的大小,而不仅仅是方向。平方操作确保了所有的偏差都是正值,并且较大的偏差会被赋予更高的权重。
  4. 计算平均值:最后,我们计算所有残差平方的平均值。这是通过将所有残差平方相加,然后除以数据点的数量来完成的。这个平均值就是均方误差(MSE)。

数学上,MSE的计算公式可以表示为:

M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 MSE=n1i=1n(yiy^i)2

其中:

  • n n n 是数据点的数量。
  • y i y_i yi 是第 i i i 个数据点的实际目标值(真实值)。
  • y ^ i \hat{y}_i y^i 是模型对第 i i i 个数据点的预测值。

MSE的值越小,说明模型的预测性能越好,因为它意味着模型的预测值与实际值之间的偏差越小。然而,需要注意的是,MSE对较大的偏差非常敏感,因此当数据中存在较大的异常值时,MSE可能会受到较大的影响。

二、案例学习

下面是一个简单的示例,展示如何使用sklearn计算MSE:

首先,我们需要导入必要的库和数据集。在这个例子中,我们将使用sklearn自带的波士顿房价数据集。

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
from sklearn.datasets import fetch_california_housing# 加载房价数据集
housing = fetch_california_housing()
X = housing.data
y = housing.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

接下来,我们创建一个线性回归模型,并使用训练数据进行训练。

# 创建线性回归模型
model = LinearRegression()# 使用训练数据进行训练
model.fit(X_train, y_train)

然后,我们使用训练好的模型对测试集进行预测,并计算预测值与实际值之间的MSE。

# 对测试集进行预测
y_pred = model.predict(X_test)# 计算MSE
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')# Mean Squared Error: 0.5558915986952422

在这个例子中,我们使用了线性回归模型进行预测,并计算了预测值与实际值之间的MSE。你可以根据需要使用其他回归模型,如决策树回归、随机森林回归等,并计算相应的MSE。

三、总结

需要注意的是,MSE越小表示模型预测效果越好。但需要注意的是,MSE的大小也会受到数据规模和目标变量量纲的影响,在实际应用中,MSE常常与其他回归模型指标一起使用,如均方根误差(RMSE)或决定系数(R²),以提供对模型性能的全面评估。这些指标可以从不同角度反映模型的性能,帮助我们更好地理解和改进模型。

这篇关于sklearn【MSE】均方误差,原理及学习代码!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926727

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引