去除图像周围的0像素,调整大小

2024-04-22 18:36

本文主要是介绍去除图像周围的0像素,调整大小,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在做分割任务时,经常需要处理图像,如果图像周围有一圈0像素,需要去除掉,重新调整大小

数组的处理

如果图像的最外一圈为0,我们将图像最外圈的图像0去除掉。

import numpy as npdef remove_outer_zeros(arr):# 获取数组的行数和列数rows, cols = arr.shape# 检查最外层是否存在0top_row_zero = np.all(arr[0, :] == 0)bottom_row_zero = np.all(arr[-1, :] == 0)left_col_zero = np.all(arr[:, 0] == 0)right_col_zero = np.all(arr[:, -1] == 0)# 如果最外层有0,将其去除if top_row_zero:arr = arr[1:, :]if bottom_row_zero:arr = arr[:-1, :]if left_col_zero:arr = arr[:, 1:]if right_col_zero:arr = arr[:, :-1]return arr# 测试
a = np.array([[0,0,0,0,0,0],[0,1,2,0,3,0],[0,2,0,3,6,0],[0,0,5,6,13,0],[0,5,8,0,0,0],[0,0,0,0,0,0]])
new_arr = remove_outer_zeros(a)
print(a)
print(new_arr)

[[ 0  0  0  0  0  0]
 [ 0  1  2  0  3  0]
 [ 0  2  0  3  6  0]
 [ 0  0  5  6 13  0]
 [ 0  5  8  0  0  0]
 [ 0  0  0  0  0  0]]
[[ 1  2  0  3]
 [ 2  0  3  6]
 [ 0  5  6 13]
 [ 5  8  0  0]]

 灰度图像的处理

 如果我们处理的图像为灰度图像

import numpy as np
from PIL import Image
from matplotlib import pyplot as pltdef remove_outer_zeros(image_path):# 打开图像img = Image.open(image_path)pixels = img.load()# 获取图像的尺寸width, height = img.size# 寻找最外层全为0的行和列top, bottom, left, right = 0, height, 0, widthfor i in range(height):if all(pixels[x, i] == 0 for x in range(width)):top = i + 1else:breakfor i in range(height - 1, -1, -1):if all(pixels[x, i] == 0 for x in range(width)):bottom = ielse:breakfor i in range(width):if all(pixels[i, y] == 0 for y in range(height)):left = i + 1else:breakfor i in range(width - 1, -1, -1):if all(pixels[i, y] == 0 for y in range(height)):right = ielse:break# 剪裁图像cropped_img = img.crop((left, top, right, bottom))cropped_img = np.array(cropped_img)return cropped_img# 调用函数
image_path = r"D:\BaiduNetdiskDownload\DRIVE\DRIVE\training\mask\21_training_mask.gif"img = np.array(Image.open(image_path))
cropped_img = remove_outer_zeros(image_path)print(img.shape)
print(cropped_img.size )# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimSun']# 创建一个包含四个子图的画布
# 创建一个包含四个子图的画布
fig, axes = plt.subplots(1, 2)# 第一张子图:原始图像
axes[0].imshow(img)
axes[0].set_title('原始图像')
axes[0].axis('off')# 第二张子图:插值后的图像
axes[1].imshow(cropped_img)
axes[1].set_title('裁剪后图像')
axes[1].axis('off')
# 调整布局,防止标题重叠
plt.tight_layout()# 展示图像
plt.show()# # 保存新的图像
# new_image.save("new_image.gif")

彩色图像的处理 

这是我们的原始图像 大小为(299,200,3)

 

 我们将原始图像扩充50个0像素后的图像

from PIL import Image, ImageOps
import numpy as npdef expand_image(image_path, padding):# 打开图像image = Image.open(image_path)# 获取图像原始尺寸width, height = image.size# 创建一个新的图像,包含原图像和指定大小的填充new_width = width + 2 * paddingnew_height = height + 2 * paddingexpanded_image = Image.new("RGB", (new_width, new_height), color=(0, 0, 0))# 将原图像粘贴到新图像的中间expanded_image.paste(image, (padding, padding))return expanded_image# 图像路径
image_path = r"D:\My Data\Figure\下载.jpg"
# 填充大小
padding = 50# 扩充图像
expanded_image = expand_image(image_path, padding)# 保存扩充后的图像
output_path = r"D:\My Data\Figure\扩充.jpg"
expanded_image.save(output_path)# 提示保存成功
print("扩充后的图像已保存到:", output_path)

扩充后的图像,大小为(399, 300, 3)

 然后我们处理扩充后的图像,去掉周围的0像素。

import numpy as np
from PIL import Image
from matplotlib import pyplot as pltdef trim_image(image_path):# 打开图像image = Image.open(image_path)# 转换为numpy数组image_array = np.array(image)# 找到非零像素的边界non_zero_indices = np.nonzero(image_array)min_row = np.min(non_zero_indices[0])max_row = np.max(non_zero_indices[0])min_col = np.min(non_zero_indices[1])max_col = np.max(non_zero_indices[1])# 裁剪图像cropped_image_array = image_array[min_row:max_row + 1, min_col:max_col + 1]# 将裁剪后的数组转换为图像#cropped_image = Image.fromarray(cropped_image_array)cropped_image = np.array(cropped_image_array)return cropped_image# 图像路径
image_path = r"D:\My Data\Figure\扩充.jpg"image = np.array(Image.open(image_path))
# 调用函数裁剪图像
cropped_image = trim_image(image_path)print(image.shape)
print(cropped_image.shape)# 显示裁剪后的图像和原图像
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimSun']# 创建一个包含四个子图的画布
# 创建一个包含四个子图的画布
fig, axes = plt.subplots(1, 2)# 第一张子图:原始图像
axes[0].imshow(image)
axes[0].set_title('原始图像')
axes[0].axis('off')# 第二张子图:插值后的图像
axes[1].imshow(cropped_image)
axes[1].set_title('去除周围的0像素')
axes[1].axis('off')# 调整布局,防止标题重叠
plt.tight_layout()# 展示图像
plt.show()

 去除后的图像大小为(304, 208, 3), 可见我们确实将周围的0像素去除掉了,但是周围还是有黑边,说明去掉的还是不够好。

这篇关于去除图像周围的0像素,调整大小的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926546

相关文章

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

使用Python和Tkinter实现html标签去除工具

《使用Python和Tkinter实现html标签去除工具》本文介绍用Python和Tkinter开发的HTML标签去除工具,支持去除HTML标签、转义实体并输出纯文本,提供图形界面操作及复制功能,需... 目录html 标签去除工具功能介绍创作过程1. 技术选型2. 核心实现逻辑3. 用户体验增强如何运行

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(