GUI系统之SurfaceFlinger(2)Gralloc与Framebuffer

2024-04-22 17:32

本文主要是介绍GUI系统之SurfaceFlinger(2)Gralloc与Framebuffer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章都是通过阅读源码分析出来的,还在不断完善与改进中,其中难免有些地方理解得不对,欢迎大家批评指正
转载请注明:From LXS. http://blog.csdn.net/uiop78uiop78/


1.1 Gralloc与Framebuffer

相信做过Linux开发的人对framebuffer不会太陌生,它是内核系统提供的一个与硬件无关的显示抽象层。之所以称之为buffer,是由于它也是系统存储空间的一部分,是一块包含屏幕显示信息的缓冲区。由此可见,在“一切都是文件”的Linux系统中,Framebuffer被看成了终端monitor的“化身”。它借助于文件系统向上层提供统一而方便的操作接口,从而让用户空间程序可以不用修改就能适应多种屏幕——无论这些屏幕是哪家厂商、什么型号,都由framebuffer内部来兼容。

在Android系统中,framebuffer提供的设备文件节点是/dev/graphics/fb*。因为理论上支持多个屏幕显示,所以fb按数字序号进行排列,即fb0、fb1等等。其中第一个fb0是主显示屏幕,必须存在。如下是某设备的fb设备截图:


图 11‑2 fb节点

 

根据前面章节学习过的知识,Android中各子系统通常不会直接基于Linux驱动来实现,而是由HAL层间接引用底层架构,在显示系统中也同样如此——它借助于HAL层来操作帧缓冲区,而完成这一中介任务的就是Gralloc,下面我们分几个方面来介绍。

<1>  Gralloc的加载

Gralloc对应的模块是由FramebufferNativeWindow(OpenGLES的本地窗口之一,后面小节有详细介绍)在构造时加载的,即:

hw_get_module(HWC_HARDWARE_MODULE_ID, &mModule);

这个hw_get_module函数我们在前面已经见过很多次了,它是上层加载HAL库的入口,这里传入的模块ID名为:

#define GRALLOC_HARDWARE_MODULE_ID  "gralloc"

按照hw_get_module的作法,它会在如下路径中查找与ID值匹配的库:

#define HAL_LIBRARY_PATH1 "/system/lib/hw"

#define HAL_LIBRARY_PATH2 "/vendor/lib/hw"

lib库名有如下几种形式:

    gralloc.[ro.hardware].so

    gralloc.[ro.product.board].so

    gralloc.[ro.board.platform].so

    gralloc.[ro.arch].so

或者当上述的系统属性组成的文件名都不存在时,就使用默认的:

    gralloc.default.so

最后这个库是Android原生态的实现,位置在hardware/libhardware/modules/gralloc/中,它由gralloc.cpp、framebuffer.cpp和mapper.cpp三个主要源文件编译生成。

 

<2>  Gralloc提供的接口

Gralloc对应的库被加载后,我们来看下它都提供了哪些接口方法。

由于Gralloc代表的是一个hw_module_t,这是HAL中统一定义的硬件模块描述体,所以和其它module所能提供的接口是完全一致的:

/*hardware/libhardware/include/hardware/Hardware.h*/

typedef struct hw_module_t {…

    structhw_module_methods_t* methods;

                …

} hw_module_t;

 

typedef struct hw_module_methods_t {

    int (*open)(const structhw_module_t* module, const char* id,

            structhw_device_t** device);

} hw_module_methods_t;

这个open接口可以帮助上层打开两个设备,分别是:

       #defineGRALLOC_HARDWARE_FB0   "fb0"

以及   #define GRALLOC_HARDWARE_GPU0  "gpu0"

 

“fb0”就是我们前面说的主屏幕,gpu0负责图形缓冲区的分配和释放。这两个设备将由FramebufferNativeWindow中的fbDev和grDev成员变量来管理。

/*frameworks/native/libs/ui/FramebufferNativeWindow.cpp*/      

FramebufferNativeWindow::FramebufferNativeWindow()

            : BASE(),fbDev(0), grDev(0), mUpdateOnDemand(false)

{…

    err = framebuffer_open(module, &fbDev);

    err =gralloc_open(module, &grDev);

这两个open函数分别是由hardware/libhardware/include/hardware目录下的Fb.h和Gralloc.h头文件提供的打开fb及gralloc设备的便捷实现。其中fb对应的设备名为GRALLOC_HARDWARE_FB0,gralloc则是GRALLOC_HARDWARE_GPU0。各硬件生产商可以根据自己的平台配置来实现fb和gralloc的打开、关闭以及管理,比如hardware/msm7k/libgralloc就是一个很好的参考例子。

原生态的实现在hardware/libhardware/modules/gralloc中,对应的是gralloc_device_open@Gralloc.cpp。在这个函数中,根据设备名来判断是打开fb或者gralloc。

/*hardware/libhardware/modules/gralloc/Gralloc.cpp*/

int gralloc_device_open(const hw_module_t* module, const char* name,hw_device_t** device)

{

    int status = -EINVAL;

    if (!strcmp(name, GRALLOC_HARDWARE_GPU0)) {//打开gralloc设备

        …

    } else {

        status = fb_device_open(module, name, device);//否则就是fb设备

    }

    return status;

}

先来大概看下framebuffer设备的打开过程:

/*hardware/libhardware/modules/gralloc/Framebuffer.cpp*/

int fb_device_open(hw_module_t const* module, const char* name,hw_device_t** device)

{

    int status = -EINVAL;

    if (!strcmp(name,GRALLOC_HARDWARE_FB0)) {//设备名是否正确

        fb_context_t *dev =(fb_context_t*)malloc(sizeof(*dev));//分配hw_device_t空间,这是一个“壳”

        memset(dev, 0,sizeof(*dev));//初始化,良好的编程习惯

                   …

       dev->device.common.close = fb_close;//这几个接口是fb设备的核心

       dev->device.setSwapInterval = fb_setSwapInterval;

        dev->device.post          = fb_post;

                   …

        private_module_t* m =(private_module_t*)module;

        status = mapFrameBuffer(m);//内存映射,以及参数配置

        if (status >= 0) {

            …

            *device =&dev->device.common;//“壳”和“核心”的关系

        }

    }

    return status;

}

其中fb_context_t是framebuffer内部使用的一个类,它包含了众多信息,而最终返回的device只是其内部的device.common。这种“通用和差异”并存的编码风格在HAL层非常常见,大家要做到习以为常。

Struct类型fb_context_t里的唯一成员就是framebuffer_device_t,这是对frambuffer设备的统一描述。一个标准的fb设备通常要提供如下的函数实现:

Ø  int(*post)(struct framebuffer_device_t* dev, buffer_handle_t buffer);

将buffer数据post到显示屏上。要求buffer必须与屏幕尺寸一致,并且没有被locked。这样的话buffer内容将在下一次VSYNC中被显示出来

Ø  int(*setSwapInterval)(struct framebuffer_device_t* window, int interval);

设置两个缓冲区交换的时间间隔

Ø  int(*setUpdateRect)(struct framebuffer_device_t* window, int left, int top,

                 int width, int height);

设置刷新区域,需要framebuffer驱动支持“update-on-demand”。也就是说在这个区域外的数据很可能被认为无效

 

我们再来解释下framebuffer_device_t中一些重要的成员变量,如下表:

表格 11‑1 framebuffer_device_t中的重要成员变量

变量

描述

uint32_t  flags

标志位,指示framebuffer的属性配置

uint32_t  width;

uint32_t  height;

framebuffer的宽和高,以像素为单位

int       format

framebuffer的像素格式,比如:HAL_PIXEL_FORMAT_RGBA_8888 HAL_PIXEL_FORMAT_RGBX_8888

HAL_PIXEL_FORMAT_RGB_888

HAL_PIXEL_FORMAT_RGB_565等等

float     xdpi;

float     ydpi;

x和y轴的密度(pixel per inch)

float     fps

屏幕的每秒刷新频率,假如无法正常从设备获取的话,默认设置为60Hz

int       minSwapInterval;

int       maxSwapInterval;

该framebuffer支持的最小和最大缓冲交换时间

 

到目前为止,我们还没看到系统是如何打开具体的fb设备、以及如何对fb进行配置,这些工作都是在mapFrameBuffer()完成的。这个函数首先尝试打开(调用open,权限为O_RDWR)如下路径中的fb设备:

"/dev/graphics/fb%u"或者 "/dev/fb%u",其中%u当前的实现中只用了“0”,也就是只会打开一个fb,虽然Android从趋势上看是要支持多屏幕的。成功打开fb后,我们通过:

ioctl(fd, FBIOGET_FSCREENINFO, &finfo);

ioctl(fd, FBIOGET_VSCREENINFO, &info)

来得到显示屏的一系列参数,同时通过

ioctl(fd, FBIOPUT_VSCREENINFO, &info)来对底层fb进行配置。

这个函数的另一重要任务,就是对fb做内存映射,主要语句如下:

    void* vaddr = mmap(0,fbSize, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);   

   module->framebuffer->base = intptr_t(vaddr);

    memset(vaddr, 0, fbSize);

所以映射地址是module->framebuffer->base,这个module对应的是前面hw_get_module(GRALLOC_HARDWARE_MODULE_ID,&module)得到的hw_module_t(被强制类型转化为private_module_t,大家可以自己看下这个struct)。

 

接下来再看下对gralloc设备的打开操作,它相对fb简单些,如下所示:

/*hardware/libhardware/modules/gralloc/Gralloc.cpp*/

int gralloc_device_open(const hw_module_t* module, const char* name,hw_device_t** device)

{

    int status = -EINVAL;

    if (!strcmp(name,GRALLOC_HARDWARE_GPU0)) {

        gralloc_context_t*dev;//做法和fb类似

        dev =(gralloc_context_t*)malloc(sizeof(*dev));//分配空间

        /* initialize ourstate here */

        memset(dev, 0,sizeof(*dev));

                   …

       dev->device.alloc   =gralloc_alloc; //从提供的接口来看,gralloc和分配/释放有关系

       dev->device.free    =gralloc_free;

}

与fb相似的部分我们就不多做介绍了。因为gralloc担负着图形缓冲区的分配与释放,所以它提供了两个最重要的实现即alloc和free。这里我们先不深入分析了,只要知道gralloc所提供的功能就可以了。

我们以下面简图来小结对Gralloc的分析。


图 11‑3 Gralloc简图

 


这篇关于GUI系统之SurfaceFlinger(2)Gralloc与Framebuffer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926412

相关文章

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

更改linux系统的默认Python版本方式

《更改linux系统的默认Python版本方式》通过删除原Python软链接并创建指向python3.6的新链接,可切换系统默认Python版本,需注意版本冲突、环境混乱及维护问题,建议使用pyenv... 目录更改系统的默认python版本软链接软链接的特点创建软链接的命令使用场景注意事项总结更改系统的默

在Linux系统上连接GitHub的方法步骤(适用2025年)

《在Linux系统上连接GitHub的方法步骤(适用2025年)》在2025年,使用Linux系统连接GitHub的推荐方式是通过SSH(SecureShell)协议进行身份验证,这种方式不仅安全,还... 目录步骤一:检查并安装 Git步骤二:生成 SSH 密钥步骤三:将 SSH 公钥添加到 github

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处