深度学习之视觉特征提取器——VGG系列

2024-04-22 13:44

本文主要是介绍深度学习之视觉特征提取器——VGG系列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VGG

提出论文:1409.1556.pdf (arxiv.org)

引入

距离VGG网络的提出已经约十年,很难想象在深度学习高速发展的今天,一个模型能够历经十年而不衰。虽然如今已经有VGG的大量替代品,但是笔者研究的一些领域仍然有大量工作选择使用VGG。有人说VGG开创了基于一些基础结构(如Conv,Linear,RNN)进行模型堆叠的开端,但笔者更以为是其对深层次网络的研究和特征提取器这一概念的广泛使用作出了巨大贡献(但并不是首次提出)。深度学习高速发展之外,是硬件算力的高速发展。10年前使用VGG某种意义上也可以看成现如今使用LLM。VGG是由Visual Geometry Group中的两位大佬提出(VGG名字的由来就显而易见了)

模型介绍

请添加图片描述

3×3卷积核

在VGG中,很大的贡献之一是使用了3×3卷积核以替代5×5卷积核、7×7卷积核等。这样的优点有两个:

(1)对相同大小的图像使用更小感受野的卷积,就会导致卷积的层数更多,层数更多意味着对非线性的拟合更好。这一点可以类比于高次函数可以拟合的曲线更多、更逼近。比如 y = a x + b y=ax+b y=ax+b就难以拟合曲线,而 y = ( a x + b ) ( c x + d ) y=(ax+b)(cx+d) y=(ax+b)(cx+d)就可以拟合部分曲线。

(2)对相同大小的图像使用3×3的卷积所需要的参数量更少。如图,如果用作者论文中举的例子就是,对一个7×7的感受野使用3×3的卷积总共需要 3 × ( 3 2 C 2 ) = 27 C 2 3\times(3^2C^2)=27C^2 3×(32C2)=27C2的参数,而使用7×7的卷积核则需要 ( 7 2 C 2 ) = 49 C 2 (7^2C^2)=49C^2 (72C2)=49C2的参数,其中 C C C代表通道数。

补充解释:一个3×3的卷积核参数量是 3 2 3^2 32,如果原始特征有 C C C个通道,输出特征也相应有 C C C个通道,那么每个通道对应相乘就得到 C 2 C^2 C2,而对于一个7×7的感受野,需要分成三个阶段使用3×3的卷积,所以再乘以3。

不同深度的VGG

VGG最常见的有四种模型结构,分别是VGG11,VGG13,VGG16,VGG19,其模型结构分别如下:

请添加图片描述

作者也是通过这四种不同深度的模型验证了更深的网络可以有效提高模型的效果。

代码实现

目前最便捷的方法是使用Pytorch中的torchvision库。

以VGG16举例:

下面是官方给的代码:

from torchvision.io import read_image
from torchvision.models import vgg16, VGG16_Weightsimg = read_image("image.jpg")# Step 1: Initialize model with the best available weights
weights = VGG16_Weights.DEFAULT
model = vgg16(weights=weights)
model.eval()# Step 2: Initialize the inference transforms
preprocess = weights.transforms()# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
print(f"{category_name}: {100 * score:.1f}%")

如果要封装成一个类,并控制输出的维度,可以使用如下代码:

import torch.nn as nn
import torchvision.models as models
from torchvision.models.vgg import VGG16_Weightsclass VGG16(nn.Module):def __init__(self):super(VGG16, self).__init__()self.vgg = models.vgg16(weights=VGG16_Weights.IMAGENET1K_V1)self.dim_feat = 4096self.vgg.classifier[6] = nn.Linear(4096, self.dim_feat)def forward(self, x):output = self.vgg(x)return output

当然,VGG并不止VGG16可以调用,下面是Pytorch官方给出的表格:

WeightAcc@1Acc@5ParamsGFLOPSRecipe
VGG11_BN_Weights.IMAGENET1K_V170.3789.81132.9M7.61link
VGG11_Weights.IMAGENET1K_V169.0288.628132.9M7.61link
VGG13_BN_Weights.IMAGENET1K_V171.58690.374133.1M11.31link
VGG13_Weights.IMAGENET1K_V169.92889.246133.0M11.31link
VGG16_BN_Weights.IMAGENET1K_V173.3691.516138.4M15.47link
VGG16_Weights.IMAGENET1K_V171.59290.382138.4M15.47link
VGG16_Weights.IMAGENET1K_FEATURESnannan138.4M15.47link
VGG19_BN_Weights.IMAGENET1K_V174.21891.842143.7M19.63link
VGG19_Weights.IMAGENET1K_V172.37690.876143.7M19.63link

这篇关于深度学习之视觉特征提取器——VGG系列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925944

相关文章

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio