深度学习之视觉特征提取器——VGG系列

2024-04-22 13:44

本文主要是介绍深度学习之视觉特征提取器——VGG系列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VGG

提出论文:1409.1556.pdf (arxiv.org)

引入

距离VGG网络的提出已经约十年,很难想象在深度学习高速发展的今天,一个模型能够历经十年而不衰。虽然如今已经有VGG的大量替代品,但是笔者研究的一些领域仍然有大量工作选择使用VGG。有人说VGG开创了基于一些基础结构(如Conv,Linear,RNN)进行模型堆叠的开端,但笔者更以为是其对深层次网络的研究和特征提取器这一概念的广泛使用作出了巨大贡献(但并不是首次提出)。深度学习高速发展之外,是硬件算力的高速发展。10年前使用VGG某种意义上也可以看成现如今使用LLM。VGG是由Visual Geometry Group中的两位大佬提出(VGG名字的由来就显而易见了)

模型介绍

请添加图片描述

3×3卷积核

在VGG中,很大的贡献之一是使用了3×3卷积核以替代5×5卷积核、7×7卷积核等。这样的优点有两个:

(1)对相同大小的图像使用更小感受野的卷积,就会导致卷积的层数更多,层数更多意味着对非线性的拟合更好。这一点可以类比于高次函数可以拟合的曲线更多、更逼近。比如 y = a x + b y=ax+b y=ax+b就难以拟合曲线,而 y = ( a x + b ) ( c x + d ) y=(ax+b)(cx+d) y=(ax+b)(cx+d)就可以拟合部分曲线。

(2)对相同大小的图像使用3×3的卷积所需要的参数量更少。如图,如果用作者论文中举的例子就是,对一个7×7的感受野使用3×3的卷积总共需要 3 × ( 3 2 C 2 ) = 27 C 2 3\times(3^2C^2)=27C^2 3×(32C2)=27C2的参数,而使用7×7的卷积核则需要 ( 7 2 C 2 ) = 49 C 2 (7^2C^2)=49C^2 (72C2)=49C2的参数,其中 C C C代表通道数。

补充解释:一个3×3的卷积核参数量是 3 2 3^2 32,如果原始特征有 C C C个通道,输出特征也相应有 C C C个通道,那么每个通道对应相乘就得到 C 2 C^2 C2,而对于一个7×7的感受野,需要分成三个阶段使用3×3的卷积,所以再乘以3。

不同深度的VGG

VGG最常见的有四种模型结构,分别是VGG11,VGG13,VGG16,VGG19,其模型结构分别如下:

请添加图片描述

作者也是通过这四种不同深度的模型验证了更深的网络可以有效提高模型的效果。

代码实现

目前最便捷的方法是使用Pytorch中的torchvision库。

以VGG16举例:

下面是官方给的代码:

from torchvision.io import read_image
from torchvision.models import vgg16, VGG16_Weightsimg = read_image("image.jpg")# Step 1: Initialize model with the best available weights
weights = VGG16_Weights.DEFAULT
model = vgg16(weights=weights)
model.eval()# Step 2: Initialize the inference transforms
preprocess = weights.transforms()# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
print(f"{category_name}: {100 * score:.1f}%")

如果要封装成一个类,并控制输出的维度,可以使用如下代码:

import torch.nn as nn
import torchvision.models as models
from torchvision.models.vgg import VGG16_Weightsclass VGG16(nn.Module):def __init__(self):super(VGG16, self).__init__()self.vgg = models.vgg16(weights=VGG16_Weights.IMAGENET1K_V1)self.dim_feat = 4096self.vgg.classifier[6] = nn.Linear(4096, self.dim_feat)def forward(self, x):output = self.vgg(x)return output

当然,VGG并不止VGG16可以调用,下面是Pytorch官方给出的表格:

WeightAcc@1Acc@5ParamsGFLOPSRecipe
VGG11_BN_Weights.IMAGENET1K_V170.3789.81132.9M7.61link
VGG11_Weights.IMAGENET1K_V169.0288.628132.9M7.61link
VGG13_BN_Weights.IMAGENET1K_V171.58690.374133.1M11.31link
VGG13_Weights.IMAGENET1K_V169.92889.246133.0M11.31link
VGG16_BN_Weights.IMAGENET1K_V173.3691.516138.4M15.47link
VGG16_Weights.IMAGENET1K_V171.59290.382138.4M15.47link
VGG16_Weights.IMAGENET1K_FEATURESnannan138.4M15.47link
VGG19_BN_Weights.IMAGENET1K_V174.21891.842143.7M19.63link
VGG19_Weights.IMAGENET1K_V172.37690.876143.7M19.63link

这篇关于深度学习之视觉特征提取器——VGG系列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/925944

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认