再论图像变化和频率的关系(使用数学工具)。

2024-04-22 13:44

本文主要是介绍再论图像变化和频率的关系(使用数学工具)。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我之前是做了一些探讨,但是没说清楚,现在再看这个问题。

我先提出这个问题。

以以为点列为例,先写成傅里叶级数的形式,不过这里不是三角函数形式,而是指数形式,是一样的。

对f(n)求导,就可以观察变化率了。但是我暂且不这样做,因为我先从直观感受出发。如果f(n+1)-f(n)较大说明了这个位置的像素变化快,那么在三角函数中该如何显示呢?把上图的指数函数看成是三角函数,所以差值f'(n)是跟频率有关,也跟三角级数的幅值F(k)有关。在连续函数的傅里叶级数求导中,如下图所示:

n跟频率有关,确实也说明了这一点。但是问题是在连续函数中,n是无数多个,而f'(x)的值是确定的,到底是多少个频率nk影响了f'(k)的值呢?连续的不好解决,现在看离散的级数的情况。

由于这里是有限个点,所以问题变简单了。

N个频率,只有一个频率k使得Fk*e^{i*2\pi *n*k/N}的绝对值最接近f'(n),然后其余N-1个F(k)作向量加法等于f'(n)。但是这样想无助于问题,那就利用方程组的思想吧。

已知有N个不同频率的正弦函数ck(n)和余弦函数sk(n)建立方程组

\sum_{k=0}^{N-1}Fk*[ck(n)+i*sk(n)]=fn

这样看不方便,用指数函数代替,设为en(k)=ck(n)+i*sk(n),即是

\sum_{k=0}^{N-1}Fk*en,k=fn,写成矩阵形式: E*(F0,F1,...,F(N-1))'=(f0,f1,...,f(N-1))'。

Fk的下标k表示频率,fn的下标n表示位置。

情况本身是这样的,首先是取了fn的N个点,然后由于N确定了矩阵E。所以可以求出来唯一解Fk。

但是问题是若f(m+1)-f(m)较大,则可能只是存在极少数比如l个的kl,跟这个差值非常接近。

E中的(n,k)元是第n行第k列元素,代表在复平面上x轴上的单位向量逆时转旋转2\pikn/N个角度,

可以看出来这是个对称矩阵。我不分析了,网上有傅里叶变换的矩阵分析,是范德蒙矩阵,还是个正交矩阵,也是对称矩阵。

设En表示矩阵的行向量, n是空间域的位置。

现在计算f(n+1)-f(n)=[E(n+1)-E(n)]*F

En看不出来是什么,但是矩阵E具有对称性,所以En(k)=E(k,n), 设Ek=E(k,n),实际上Ek代表的是在空间域上频率为k的一位置n为定义域的正弦函数和余弦函数对。

所以f(n+1)-f(n)=[E(n+1)-E(n)]*F表示: 当f(n)分解为三角函数的时候,变化率为两个相邻的正弦函数和余弦函数对的差值和F的内积。而三角函数早就已经固定了。

反正正弦函数与余弦函数都是在一个周期内,等分成了N个点。

f(n+1)-f(n)=[E(n+1)-E(n)]*E^(-1)*f', 由于E是对称矩阵,且是正定矩阵,则E^(-1)=E。

所以f(n+1)-f(n)=f(n+1)-f(n)。这只能说明我没有推到错误。但是k呢?我希望看到的是关于k的函数。由于对称性En已可以理解为在频率为n的时候,不同位置的三角函数值,Fk的k也可以理解为位置上的权重。所以也可以理解为不同频率上的差值的向量的内积。

所以到底是理解为在位置n和n+1处的两个相同频率的三角函数的差值,还是理解为在频率为n+1和n处的两个相同位置的三角函数的差值。为了不累加频率,那只能理解为Fk是关于位置的权重。但是依然没用。我需要的是在频率为n的时候,减少该频率的F(n)的值或者F(n)附近的值,就能改变位置n的或者附近的变化率。(利用数学工具都无法说明,那我只能从算法看了。)

这篇关于再论图像变化和频率的关系(使用数学工具)。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925940

相关文章

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命