【Pytorch】Yolov5中CPU转GPU过程报错完善留档归纳

2024-04-22 08:52

本文主要是介绍【Pytorch】Yolov5中CPU转GPU过程报错完善留档归纳,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Yolov5 + 从CPU转GPU + Python多版本切换 + Conda包处理

文章目录

    • Yolov5 + 从CPU转GPU + Python多版本切换 + Conda包处理
    • 1.Pytorch套件中存在版本不匹配
    • 2.numpy停留在3.8没跟上pytorch2.2.2
    • 3.ModuleNotFoundError: No module named 'pandas._libs.interval'
    • 4.ImportError: cannot import name '_c_internal_utils' from partially initialized module 'matplotlib' (most likely due to a circular import)
    • 5. 单升级matplotlib导致依赖缺失未升级
    • 6.ImportError: The scipy install you are using seems to be broken, (extension modules cannot be imported)
    • 7.If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management 炸空间
    • 8.NotImplementedError: Could not run ‘torchvision::nms' with arguments from the 'cuDA' backend.

1.Pytorch套件中存在版本不匹配

这是后续一系列惨烈报错的起点,包括但不限于pytorch与torch,torch与torchvision,numpy与python,升级python及numpy导致matplotlib多版本残留,处理matplotlib又导致scipy包损坏,最后一切修好后出现炸掉空间无法启动。。。。。。

ERROR: pip’s dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
torchvision 0.17.2 requires torch==2.2.2, but you have torch 1.8.0 which is incompatible.

解决办法
与此前自动升级了torch而落下torchvision相反,这次是torch被落下(
发生原因是用conda create -n yolov5 python=3.8后,考虑原项目使用的是

torch==1.80+python3.8.16

把torch,torchvision,python都从低版本升级到高版本后,各种问题开始浮上水面。

2.numpy停留在3.8没跟上pytorch2.2.2

torch OSError: [WinError 126] 找不到指定的模块

升级numpy

pip install --upgrade numpy

3.ModuleNotFoundError: No module named ‘pandas._libs.interval’

(yolo5) C:\Users\ASUS\Desktop\yolo\yolov5>python train.py --img 640 --batch 32 --epoch 3 --data data/horse.yaml --cfg models/yolov5s.yaml --weights weights/yolov5s.pt
Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 49, in
import val as validate # for end-of-epoch mAP
^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\val.py”, line 39, in
from models.common import DetectMultiBackend
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\common.py”, line 18, in
import pandas as pd
File “E:\anaconda3\envs\yolo5\Lib\site-packages\pandas_init_.py”, line 22, in
from pandas.compat import is_numpy_dev as is_numpy_dev # pyright: ignore # noqa:F401
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\anaconda3\envs\yolo5\Lib\site-packages\pandas\compat_init
.py", line 25, in
from pandas.compat.numpy import (
File “E:\anaconda3\envs\yolo5\Lib\site-packages\pandas\compat\numpy_init_.py”, line 4, in
from pandas.util.version import Version
File “E:\anaconda3\envs\yolo5\Lib\site-packages\pandas\util_init_.py”, line 2, in
from pandas.util._decorators import ( # noqa:F401
File “E:\anaconda3\envs\yolo5\Lib\site-packages\pandas\util_decorators.py”, line 14, in
from pandas.libs.properties import cache_readonly
File "E:\anaconda3\envs\yolo5\Lib\site-packages\pandas_libs_init
.py", line 13, in
from pandas._libs.interval import Interval
ModuleNotFoundError: No module named ‘pandas._libs.interval’

缺了pandas小小的库依赖。。。

pip install --force-reinstall pandas

4.ImportError: cannot import name ‘_c_internal_utils’ from partially initialized module ‘matplotlib’ (most likely due to a circular import)

Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\common.py”, line 27, in
import ultralytics
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics_init_.py”, line 5, in
from ultralytics.data.explorer.explorer import Explorer
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data_init_.py”, line 3, in
from .base import BaseDataset
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data\base.py”, line 17, in
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\utils_init_.py”, line 21, in
import matplotlib.pyplot as plt
File “E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib_init_.py”, line 157, in
from . import _api, _version, cbook, docstring, rcsetup
File "E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib\cbook_init
.py", line 35, in
from matplotlib import _api, _c_internal_utils
ImportError: cannot import name ‘_c_internal_utils’ from partially initialized module ‘matplotlib’ (mos

Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 49, in
import val as validate # for end-of-epoch mAP
^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\val.py”, line 39, in
from models.common import DetectMultiBackend
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\common.py”, line 34, in
import ultralytics
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics_init_.py”, line 5, in
from ultralytics.data.explorer.explorer import Explorer
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data_init_.py”, line 3, in
from .base import BaseDataset
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data\base.py”, line 17, in
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\utils_init_.py”, line 21, in
import matplotlib.pyplot as plt
File “E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib_init_.py”, line 157, in
from . import _api, _version, cbook, docstring, rcsetup
File "E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib\cbook_init
.py", line 35, in
from matplotlib import _api, _c_internal_utils
ImportError: cannot import name 'c_internal_utils’ from partially initialized module ‘matplotlib’ (most likely due to a circular import) (E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib_init.py)

比较复杂,问题分析:

1.项目中存在与matplotlib同名的文件,修改同名的文件(因为matplotlib是库名不能修改,即只要项目中没有同名的文件即可),再三检查后,没有同名的文件,果断放弃这一方法。

2.因多次安装卸载Python的不同版本,可能存在多个matplotlib,重新卸载matplotlib库,使用:pip uninstall matplotlib,相关的也建议删除,然后再重新安装:pip install matplotlib.
如果因为相关库删除后无法找到库,要记得重新安装(下面马上就要考)
用这个方法解决了。

另外更新库是没有用的。

pip uninstall matplotlib
pip install matplotlib

5. 单升级matplotlib导致依赖缺失未升级

During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 49, in
import val as validate # for end-of-epoch mAP
^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\val.py”, line 39, in
from models.common import DetectMultiBackend
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\common.py”, line 34, in
import ultralytics
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics_init_.py”, line 5, in
from ultralytics.data.explorer.explorer import Explorer
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data_init_.py”, line 3, in
from .base import BaseDataset
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data\base.py”, line 17, in
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\utils_init_.py”, line 21, in
import matplotlib.pyplot as plt
File “E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib_init_.py”, line 272, in
check_versions()
File "E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib_init
.py", line 266, in check_versions
module = importlib.import_module(modname)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\anaconda3\envs\yolo5\Lib\importlib_init
.py", line 90, in import_module
return _bootstrap.gcd_import(name[level:], package, level)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\anaconda3\envs\yolo5\Lib\site-packages\kiwisolver_init
.py", line 8, in
from ._cext import (
ModuleNotFoundError: No module named ‘kiwisolver._cext’

重新安装依赖

华丽的归来——缺失了相关的小依赖,重新按一遍吧。。。

pip uninstall matplotlib kiwisolver
pip install matplotlib

6.ImportError: The scipy install you are using seems to be broken, (extension modules cannot be imported)

Traceback (most recent call last):
File “E:\anaconda3\envs\yolo5\Lib\site-packages\scipy_init_.py”, line 184, in
from scipy._lib._ccallback import LowLevelCallable
File “E:\anaconda3\envs\yolo5\Lib\site-packages\scipy_lib_ccallback.py”, line 1, in
from . import _ccallback_c
ImportError: cannot import name ‘_ccallback_c’ from 'scipy.lib’ (E:\anaconda3\envs\yolo5\Lib\site-packages\scipy_lib_init.py)

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 49, in
import val as validate # for end-of-epoch mAP
^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\val.py”, line 60, in
from utils.plots import output_to_target, plot_images, plot_val_study
File “C:\Users\ASUS\Desktop\yolo\yolov5\utils\plots.py”, line 18, in
from scipy.ndimage.filters import gaussian_filter1d
File “E:\anaconda3\envs\yolo5\Lib\site-packages\scipy_init_.py”, line 189, in
raise ImportError(msg) from e
ImportError: The scipy install you are using seems to be broken, (extension modules cannot be imported), please try reinstalling.

scipy是重要的包,损坏要到全局层面去修

这次不在conda或者pip来处理,需要直接到cmd再开个黑框框终端

打开Windows控制台命令窗口:
Win + R 打开Windows命令运行框 输入 cmd 
修复对应环境缺失的包,输入:
conda install -n 环境名xxx scipy

7.If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management 炸空间

Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 850, in
main(opt)
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 625, in main
train(opt.hyp, opt, device, callbacks)
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 384, in train
pred = model(imgs) # forward
^^^^^^^^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\modules\module.py”, line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\modules\module.py”, line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\yolo.py”, line 263, in forward
return self._forward_once(x, profile, visualize) # single-scale inference, train
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\yolo.py”, line 167, in _forward_once
x = m(x) # run
^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\modules\module.py”, line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\modules\module.py”, line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\modules\upsampling.py”, line 157, in forward
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\functional.py”, line 4001, in interpolate
return torch._C._nn.upsample_nearest2d(input, output_size, scale_factors)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 26.00 MiB. GPU 0 has a total capacity of 4.00 GiB of which 0 bytes is free. Of the allocated memory 3.55 GiB is allocated by PyTorch, and 37.67 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)

思路分析:
显卡上空间不够,实在是绷不住,此前在4090上跑GLM3-32k-6B也遇到了这种情况,还有离谱的报错,尚待解决——
在这里插入图片描述

8.NotImplementedError: Could not run ‘torchvision::nms’ with arguments from the ‘cuDA’ backend.

在这里插入图片描述
NotImplementedError: Could not run ‘torchvision::nms’ with arguments from the ‘cuDA’ backend.This could be because the operator doesn’t exist for this backend,or was omitted during the selective/custom build process (if using custom build). If you are a Facebook employee using PyTorch on mobile,please visit…

嘛,如果对您有帮助的话就开心的复制吧,整理不易转载请注明qwq!
如果有更好的建议或意见欢迎补充!
我是亓云鹏(亓Qí),努力与大家一同分享算法的快乐!

每博一图(1/1)↓
在这里插入图片描述

下一个坑:

解决完所有可能的问题后胆战心惊(bushi)地开始启动
开始执行训练
在这里插入图片描述
小测试下训练结果
在这里插入图片描述在这里插入图片描述
跑出来的效果图

下面进行验证
python val.py --weights runs/train/exp/weights/best.pt --data ./data/horse.yaml --img 320
在这里插入图片描述
看一下效果
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

下一个坑:torch版本自动升级导致torchvision不一致报错

这篇关于【Pytorch】Yolov5中CPU转GPU过程报错完善留档归纳的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925334

相关文章

Django HTTPResponse响应体中返回openpyxl生成的文件过程

《DjangoHTTPResponse响应体中返回openpyxl生成的文件过程》Django返回文件流时需通过Content-Disposition头指定编码后的文件名,使用openpyxl的sa... 目录Django返回文件流时使用指定文件名Django HTTPResponse响应体中返回openp

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优