【Pytorch】Yolov5中CPU转GPU过程报错完善留档归纳

2024-04-22 08:52

本文主要是介绍【Pytorch】Yolov5中CPU转GPU过程报错完善留档归纳,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Yolov5 + 从CPU转GPU + Python多版本切换 + Conda包处理

文章目录

    • Yolov5 + 从CPU转GPU + Python多版本切换 + Conda包处理
    • 1.Pytorch套件中存在版本不匹配
    • 2.numpy停留在3.8没跟上pytorch2.2.2
    • 3.ModuleNotFoundError: No module named 'pandas._libs.interval'
    • 4.ImportError: cannot import name '_c_internal_utils' from partially initialized module 'matplotlib' (most likely due to a circular import)
    • 5. 单升级matplotlib导致依赖缺失未升级
    • 6.ImportError: The scipy install you are using seems to be broken, (extension modules cannot be imported)
    • 7.If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management 炸空间
    • 8.NotImplementedError: Could not run ‘torchvision::nms' with arguments from the 'cuDA' backend.

1.Pytorch套件中存在版本不匹配

这是后续一系列惨烈报错的起点,包括但不限于pytorch与torch,torch与torchvision,numpy与python,升级python及numpy导致matplotlib多版本残留,处理matplotlib又导致scipy包损坏,最后一切修好后出现炸掉空间无法启动。。。。。。

ERROR: pip’s dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
torchvision 0.17.2 requires torch==2.2.2, but you have torch 1.8.0 which is incompatible.

解决办法
与此前自动升级了torch而落下torchvision相反,这次是torch被落下(
发生原因是用conda create -n yolov5 python=3.8后,考虑原项目使用的是

torch==1.80+python3.8.16

把torch,torchvision,python都从低版本升级到高版本后,各种问题开始浮上水面。

2.numpy停留在3.8没跟上pytorch2.2.2

torch OSError: [WinError 126] 找不到指定的模块

升级numpy

pip install --upgrade numpy

3.ModuleNotFoundError: No module named ‘pandas._libs.interval’

(yolo5) C:\Users\ASUS\Desktop\yolo\yolov5>python train.py --img 640 --batch 32 --epoch 3 --data data/horse.yaml --cfg models/yolov5s.yaml --weights weights/yolov5s.pt
Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 49, in
import val as validate # for end-of-epoch mAP
^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\val.py”, line 39, in
from models.common import DetectMultiBackend
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\common.py”, line 18, in
import pandas as pd
File “E:\anaconda3\envs\yolo5\Lib\site-packages\pandas_init_.py”, line 22, in
from pandas.compat import is_numpy_dev as is_numpy_dev # pyright: ignore # noqa:F401
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\anaconda3\envs\yolo5\Lib\site-packages\pandas\compat_init
.py", line 25, in
from pandas.compat.numpy import (
File “E:\anaconda3\envs\yolo5\Lib\site-packages\pandas\compat\numpy_init_.py”, line 4, in
from pandas.util.version import Version
File “E:\anaconda3\envs\yolo5\Lib\site-packages\pandas\util_init_.py”, line 2, in
from pandas.util._decorators import ( # noqa:F401
File “E:\anaconda3\envs\yolo5\Lib\site-packages\pandas\util_decorators.py”, line 14, in
from pandas.libs.properties import cache_readonly
File "E:\anaconda3\envs\yolo5\Lib\site-packages\pandas_libs_init
.py", line 13, in
from pandas._libs.interval import Interval
ModuleNotFoundError: No module named ‘pandas._libs.interval’

缺了pandas小小的库依赖。。。

pip install --force-reinstall pandas

4.ImportError: cannot import name ‘_c_internal_utils’ from partially initialized module ‘matplotlib’ (most likely due to a circular import)

Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\common.py”, line 27, in
import ultralytics
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics_init_.py”, line 5, in
from ultralytics.data.explorer.explorer import Explorer
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data_init_.py”, line 3, in
from .base import BaseDataset
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data\base.py”, line 17, in
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\utils_init_.py”, line 21, in
import matplotlib.pyplot as plt
File “E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib_init_.py”, line 157, in
from . import _api, _version, cbook, docstring, rcsetup
File "E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib\cbook_init
.py", line 35, in
from matplotlib import _api, _c_internal_utils
ImportError: cannot import name ‘_c_internal_utils’ from partially initialized module ‘matplotlib’ (mos

Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 49, in
import val as validate # for end-of-epoch mAP
^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\val.py”, line 39, in
from models.common import DetectMultiBackend
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\common.py”, line 34, in
import ultralytics
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics_init_.py”, line 5, in
from ultralytics.data.explorer.explorer import Explorer
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data_init_.py”, line 3, in
from .base import BaseDataset
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data\base.py”, line 17, in
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\utils_init_.py”, line 21, in
import matplotlib.pyplot as plt
File “E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib_init_.py”, line 157, in
from . import _api, _version, cbook, docstring, rcsetup
File "E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib\cbook_init
.py", line 35, in
from matplotlib import _api, _c_internal_utils
ImportError: cannot import name 'c_internal_utils’ from partially initialized module ‘matplotlib’ (most likely due to a circular import) (E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib_init.py)

比较复杂,问题分析:

1.项目中存在与matplotlib同名的文件,修改同名的文件(因为matplotlib是库名不能修改,即只要项目中没有同名的文件即可),再三检查后,没有同名的文件,果断放弃这一方法。

2.因多次安装卸载Python的不同版本,可能存在多个matplotlib,重新卸载matplotlib库,使用:pip uninstall matplotlib,相关的也建议删除,然后再重新安装:pip install matplotlib.
如果因为相关库删除后无法找到库,要记得重新安装(下面马上就要考)
用这个方法解决了。

另外更新库是没有用的。

pip uninstall matplotlib
pip install matplotlib

5. 单升级matplotlib导致依赖缺失未升级

During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 49, in
import val as validate # for end-of-epoch mAP
^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\val.py”, line 39, in
from models.common import DetectMultiBackend
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\common.py”, line 34, in
import ultralytics
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics_init_.py”, line 5, in
from ultralytics.data.explorer.explorer import Explorer
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data_init_.py”, line 3, in
from .base import BaseDataset
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\data\base.py”, line 17, in
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
File “E:\anaconda3\envs\yolo5\Lib\site-packages\ultralytics\utils_init_.py”, line 21, in
import matplotlib.pyplot as plt
File “E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib_init_.py”, line 272, in
check_versions()
File "E:\anaconda3\envs\yolo5\Lib\site-packages\matplotlib_init
.py", line 266, in check_versions
module = importlib.import_module(modname)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\anaconda3\envs\yolo5\Lib\importlib_init
.py", line 90, in import_module
return _bootstrap.gcd_import(name[level:], package, level)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\anaconda3\envs\yolo5\Lib\site-packages\kiwisolver_init
.py", line 8, in
from ._cext import (
ModuleNotFoundError: No module named ‘kiwisolver._cext’

重新安装依赖

华丽的归来——缺失了相关的小依赖,重新按一遍吧。。。

pip uninstall matplotlib kiwisolver
pip install matplotlib

6.ImportError: The scipy install you are using seems to be broken, (extension modules cannot be imported)

Traceback (most recent call last):
File “E:\anaconda3\envs\yolo5\Lib\site-packages\scipy_init_.py”, line 184, in
from scipy._lib._ccallback import LowLevelCallable
File “E:\anaconda3\envs\yolo5\Lib\site-packages\scipy_lib_ccallback.py”, line 1, in
from . import _ccallback_c
ImportError: cannot import name ‘_ccallback_c’ from 'scipy.lib’ (E:\anaconda3\envs\yolo5\Lib\site-packages\scipy_lib_init.py)

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 49, in
import val as validate # for end-of-epoch mAP
^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\val.py”, line 60, in
from utils.plots import output_to_target, plot_images, plot_val_study
File “C:\Users\ASUS\Desktop\yolo\yolov5\utils\plots.py”, line 18, in
from scipy.ndimage.filters import gaussian_filter1d
File “E:\anaconda3\envs\yolo5\Lib\site-packages\scipy_init_.py”, line 189, in
raise ImportError(msg) from e
ImportError: The scipy install you are using seems to be broken, (extension modules cannot be imported), please try reinstalling.

scipy是重要的包,损坏要到全局层面去修

这次不在conda或者pip来处理,需要直接到cmd再开个黑框框终端

打开Windows控制台命令窗口:
Win + R 打开Windows命令运行框 输入 cmd 
修复对应环境缺失的包,输入:
conda install -n 环境名xxx scipy

7.If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management 炸空间

Traceback (most recent call last):
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 850, in
main(opt)
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 625, in main
train(opt.hyp, opt, device, callbacks)
File “C:\Users\ASUS\Desktop\yolo\yolov5\train.py”, line 384, in train
pred = model(imgs) # forward
^^^^^^^^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\modules\module.py”, line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\modules\module.py”, line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\yolo.py”, line 263, in forward
return self._forward_once(x, profile, visualize) # single-scale inference, train
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “C:\Users\ASUS\Desktop\yolo\yolov5\models\yolo.py”, line 167, in _forward_once
x = m(x) # run
^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\modules\module.py”, line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\modules\module.py”, line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\modules\upsampling.py”, line 157, in forward
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “E:\anaconda3\envs\yolo5\Lib\site-packages\torch\nn\functional.py”, line 4001, in interpolate
return torch._C._nn.upsample_nearest2d(input, output_size, scale_factors)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 26.00 MiB. GPU 0 has a total capacity of 4.00 GiB of which 0 bytes is free. Of the allocated memory 3.55 GiB is allocated by PyTorch, and 37.67 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)

思路分析:
显卡上空间不够,实在是绷不住,此前在4090上跑GLM3-32k-6B也遇到了这种情况,还有离谱的报错,尚待解决——
在这里插入图片描述

8.NotImplementedError: Could not run ‘torchvision::nms’ with arguments from the ‘cuDA’ backend.

在这里插入图片描述
NotImplementedError: Could not run ‘torchvision::nms’ with arguments from the ‘cuDA’ backend.This could be because the operator doesn’t exist for this backend,or was omitted during the selective/custom build process (if using custom build). If you are a Facebook employee using PyTorch on mobile,please visit…

嘛,如果对您有帮助的话就开心的复制吧,整理不易转载请注明qwq!
如果有更好的建议或意见欢迎补充!
我是亓云鹏(亓Qí),努力与大家一同分享算法的快乐!

每博一图(1/1)↓
在这里插入图片描述

下一个坑:

解决完所有可能的问题后胆战心惊(bushi)地开始启动
开始执行训练
在这里插入图片描述
小测试下训练结果
在这里插入图片描述在这里插入图片描述
跑出来的效果图

下面进行验证
python val.py --weights runs/train/exp/weights/best.pt --data ./data/horse.yaml --img 320
在这里插入图片描述
看一下效果
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

下一个坑:torch版本自动升级导致torchvision不一致报错

这篇关于【Pytorch】Yolov5中CPU转GPU过程报错完善留档归纳的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925334

相关文章

qt5cored.dll报错怎么解决? 电脑qt5cored.dll文件丢失修复技巧

《qt5cored.dll报错怎么解决?电脑qt5cored.dll文件丢失修复技巧》在进行软件安装或运行程序时,有时会遇到由于找不到qt5core.dll,无法继续执行代码,这个问题可能是由于该文... 遇到qt5cored.dll文件错误时,可能会导致基于 Qt 开发的应用程序无法正常运行或启动。这种错

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p