TPG原理以及verilog实现

2024-04-22 08:52
文章标签 实现 原理 verilog tpg

本文主要是介绍TPG原理以及verilog实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、前言
  • 二、verilog代码实现
  • 三、仿真以及结果分析


一、前言

  TPG(video_test_pattern generator) 视频测试模式发生器用于产生测试数据,对视频数据通路测试。根据视频输出时序产生相应的图像数据

二、verilog代码实现

`timescale 1ns / 1nsmodule tpg
(
input			I_tpg_clk, //系统时钟
input           I_tpg_rstn,//系统复位
input			I_tpg_vs,  //场同步输入
input           I_tpg_hs,  //行同步输入
input           I_tpg_de,  //视频数据有效输入	
output			O_tpg_vs,  //场同步输出
output          O_tpg_hs,  //行同步输出
output          O_tpg_de,  //视频数据有效输出	 
output [23:0]	O_tpg_data //有效测试数据
);reg         tpg_vs_r   = 1'b0; //对vs信号寄存
reg         tpg_hs_r   = 1'b0; //对hs信号寄存
reg [7 :0]  grid_data  = 8'd0; //grid棋方格寄存器
reg [23:0]  color_bar  = 24'd0;//RGB 彩条寄存器
reg [10:0]  dis_mode   = 11'd0;//显示模式寄存器
reg [7 :0]  r_reg      = 8'd0; //红寄存器
reg [7 :0]  g_reg      = 8'd0; //绿寄存器
reg [7 :0]  b_reg      = 8'd0; //蓝寄存器always @(posedge I_tpg_clk)begintpg_vs_r <= I_tpg_vs; //对vs信号寄存一次tpg_hs_r <= I_tpg_hs; //对hs信号寄存一次
endreg [11:0]v_cnt = 12'd0; //视频垂直方向,行计数器
reg [11:0]h_cnt = 12'd0; //视频水平方向,列计数器//h_cnt计数器模块
always @(posedge I_tpg_clk)h_cnt <= I_tpg_de ? h_cnt + 1'b1 : 12'd0; //计数行有效像素,当de无效,重置 h_cnt=0//v_cnt计数器模块
always @(posedge I_tpg_clk)if(I_tpg_vs) //通过vs产生同步复位v_cnt <= 12'd0; //重置v_cnt=0else v_cnt <= ((!tpg_hs_r)&&I_tpg_hs) ? v_cnt + 1'b1 : v_cnt; //hs信号的上升沿,v_cnt计数,这种方式可以不管hs有效是高电平还是低电平的情况,v_cnt 视频垂直方向,行计数器,计数行数量//显示模式切换
always @(posedge I_tpg_clk)if(I_tpg_rstn==1'b0)dis_mode <= 0;else dis_mode <= ((!tpg_vs_r)&&I_tpg_vs) ? dis_mode + 1'b1 : dis_mode;//grid_data发生器	
always @(posedge I_tpg_clk)begingrid_data <= ((v_cnt[4]==1'b1) ^ (h_cnt[4]==1'b1)) ? 8'h00 : 8'hff; //方格大小16*16,黑白交替
end//RGB彩条发生器
always @(posedge I_tpg_clk)
beginif(h_cnt==260)color_bar	<=	24'hff0000;//红else if(h_cnt==420)color_bar	<=	24'h00ff00;//绿else if(h_cnt==580)color_bar	<=	24'h0000ff;//蓝else if(h_cnt==740)color_bar	<=	24'hff00ff;//紫else if(h_cnt==900)color_bar	<=	24'hffff00;//黄else if(h_cnt==1060)color_bar	<=	24'h00ffff;//青蓝else if(h_cnt==1220)color_bar	<=	24'hffffff;//白else if(h_cnt==1380)color_bar	<=	24'h000000;//黑elsecolor_bar	<=	color_bar;
end//测试图形输出
always @(posedge I_tpg_clk)begincase(dis_mode[10:7])//截取高位,控制切换显示速度4'd0:beginr_reg <= 0; b_reg <= 0;g_reg <= 0;end4'd1:beginr_reg <= 8'b11111111;               //白g_reg <= 8'b11111111;b_reg <= 8'b11111111;end4'd2,4'd3:begin//连续两个状态输出相同图形r_reg <= 8'b11111111;              //红g_reg <= 0;b_reg <= 0;  end			  4'd4,4'd5:begin//连续两个状态输出相同图形r_reg <= 0;                         //绿g_reg <= 8'b11111111;b_reg <= 0; end					  4'd6:begin     r_reg <= 0;                         //蓝g_reg <= 0;b_reg <= 8'b11111111;end4'd7,4'd8:begin  //连续两个状态输出相同图形   r_reg <= grid_data;                 //方格g_reg <= grid_data;b_reg <= grid_data;end					  4'd9:begin    r_reg <= h_cnt[7:0];                //水平渐变g_reg <= h_cnt[7:0];b_reg <= h_cnt[7:0];end4'd10,4'd11:begin //连续两个状态输出相同图形r_reg <= v_cnt[7:0];                 //垂直渐变g_reg <= v_cnt[7:0];b_reg <= v_cnt[7:0];end4'd12:begin     r_reg <= v_cnt[7:0];                 //红垂直渐变g_reg <= 0;b_reg <= 0;end4'd13:begin     r_reg <= 0;                          //绿垂直渐变g_reg <= h_cnt[7:0];b_reg <= 0;end4'd14:begin     r_reg <= 0;                          //蓝垂直渐变g_reg <= 0;b_reg <= h_cnt[7:0];			end4'd15:begin     r_reg <= color_bar[23:16];           //彩条g_reg <= color_bar[15:8];b_reg <= color_bar[7:0];			end				  endcase
endassign O_tpg_data = {r_reg,g_reg,b_reg};//测试图形RGB数据输出
assign O_tpg_vs = I_tpg_vs;  //VS同步信号
assign O_tpg_hs = I_tpg_hs;  //HS同步信号
assign O_tpg_de = I_tpg_de;  //DE数据有效信号endmodule

三、仿真以及结果分析

  tb代码如下:

`timescale 1ns / 1ns//仿真时间刻度/精度module video_test_tb;localparam SYS_TIME = 20;//系统时钟周期10nsreg I_vid_rstn,I_vid_clk;
wire O_vid_vs,O_vid_hs,O_vid_de;
wire [7:0]O_rgb_r,O_rgb_g,O_rgb_b;//例化video_test
video_test video_test_inst
(
.I_vid_clk(I_vid_clk),
.I_vid_rstn(I_vid_rstn),
.O_vid_vs(O_vid_vs),
.O_vid_hs(O_vid_hs),
.O_vid_de(O_vid_de),
.O_rgb_r(O_rgb_r),
.O_rgb_g(O_rgb_g),
.O_rgb_b(O_rgb_b)
);//初始化
initial beginI_vid_clk  = 1'b0;I_vid_rstn = 1'b0;#100;//产生100ns的系统复位I_vid_rstn = 1'b1;//复位完成
end
//产生仿真时钟
always #(SYS_TIME/2) I_vid_clk= ~I_vid_clk;endmodule

结果分析:
在这里插入图片描述

这篇关于TPG原理以及verilog实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925330

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte