【深度学习】Dropout、DropPath

2024-04-22 04:04
文章标签 学习 深度 dropout droppath

本文主要是介绍【深度学习】Dropout、DropPath,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Dropout

1. 概念

Dropout 在训练阶段会让当前层每个神经元以drop_prob( 0 ≤ drop_prob ≤ 1 0\leq\text{drop\_prob}\leq1 0drop_prob1)的概率失活并停止工作,效果如下图。

测试阶段不会进行Dropout。由于不同批次、不同样本的神经元失活情况不同,测试时枚举所有情况进行推理是不现实的,所以原文使用一种均值近似的方法进行逼近。详情如下图:

如图, w \bold{w} w为一个神经元后的权重。假设该神经元的输出均值为 μ \mu μ,若训练阶段该神经元的存活概率为 p p p,则Dropout使其输出均值变为 p × μ p\times\mu p×μ,为使测试时该神经元输出逼近训练输出,测试阶段该神经元输出会被乘上 p p p以使测试与训练输出均值相同。

简单来说,训练时Dropout按照概率drop_prob使神经元停止工作,测试时所有神经元正常工作,但其输出值要乘上1-drop_prob( p = 1 − drop_prob p=1-\text{drop\_prob} p=1drop_prob)。

不过,我们希望测试代码执行效率尽可能高,即便仅增加一个概率计算也不是我们希望的。所以实际计算时,会在训练阶段给神经元乘上一个缩放因子 1 p \frac{1}{p} p1。这样,训练输出的均值仍为 μ \mu μ,测试则不进行Dropout也不再乘上 p p p而是原样输出。

2. 功能

优势:
Dropout能够提高网络的泛化能力,防止过拟合。解释如下:
(1) 训练阶段每个神经元是相互独立的,仅drop_prob相同,即使是同一批次不同样本失活的神经元也是不同的。所以原文作者将Dropout的操作视为多种模型结构下结果的集成,由于集成方法能够避免过拟合,因此Dropout也能达到同样的效果。
(2) 减少神经元之间的协同性。有些神经元可能会建立与其它节点的固定联系,通过Dropout强迫神经元和随机挑选出来的其它神经元共同工作,减弱了神经元节点间的联合适应性,增强了泛化能力。
劣势:
(1) Dropout减缓了收敛的速度。训练时需要通过伯努利分布生成是否drop每一个神经元的情况,额外的乘法和缩放运算也会增加时间。
(2) Dropout一般用于全连接层,卷积层一般使用BatchNorm来防止过拟合。Dropout与BatchNorm不易兼容,Dropout导致训练过程中每一层输出的方差发生偏移,使得BatchNorm层统计的方差不准确,影响BatchNorm的正常使用。

3. 实现

import torch.nn as nn
import torchclass dropout(nn.Module):def __init__(self, drop_prob):super(dropout, self).__init__()assert 0 <= drop_prob <= 1, 'drop_prob should be [0, 1]'self.drop_prob = drop_probdef forward(self, x):if self.training:keep_prob = 1 - self.drop_probmask = keep_prob + torch.rand(x.shape)mask.floor_()return x.div(keep_prob) * maskelse:return xif __name__ == '__main__':x = torch.randn((8, 768))  # [batch_size, feat_dim],dropout常在全连接层之后,所以我们以一维数据为例drop = dropout(0.1)my_o = drop(x)

二、DropPath

1. 概念

DropPath 在训练阶段将深度学习网络中的多分支结构随机删除,效果如下图:

上图是ViT中的一个模块,多分支体现在ResNet结构的引入。可以看出,DropPath在多分支中起作用对位置有明确的要求,需要放在分支合并之前。此外,DropPath也需要对训练输出进行缩放(乘 1 1 − drop_prob \frac{1}{1-\text{drop\_prob}} 1drop_prob1)以确保测试输出结果的有效性和计算的高效性,这样在测试阶段就不会进行DropPath。

事实上,DropPath功能的实现是按照drop_prob概率将该分支的当前输出全部置0。具体来说,对于某个含有DropPath的分支,该分支输出的一个批次的每个样本都独立的按照drop_prob概率被完全置0或完整保留。

2. 功能

一般可以作为正则化手段加入网络防止过拟合,但会增加网络训练的难度。如果设置的drop_prob过高,模型甚至有可能不收敛。

3. 实现

import torch
import torch.nn as nnclass DropPath(nn.Module):"""随机丢弃该分支上的每个样本"""def __init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob = drop_probdef forward(self, x):if self.drop_prob == 0. or not self.training:return xkeep_prob = 1 - self.drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1)  # (batch_size, 1, 1, 1)维数与输入保持一致,仅需要batch_size个值mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)mask.floor_()  # 二值化,向下取整用于确定保存哪些样本output = x.div(keep_prob) * maskreturn outputif __name__ == "__main__":x = torch.randn((8, 197, 768))  # [batch_size, num_token, token_dim]drop_path = DropPath(drop_prob=0.5)my_o = drop_path(x)

致谢:

本博客仅做记录使用,无任何商业用途,参考内容如下:
【个人理解向】Dropout和Droppath原理及源码讲解
nn.Dropout、DropPath的理解与pytorch代码
Drop系列正则化

这篇关于【深度学习】Dropout、DropPath的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924779

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷