Win8Metro(C#)数字图像处理--2.25二值图像距离变换

本文主要是介绍Win8Metro(C#)数字图像处理--2.25二值图像距离变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



[函数名称]

二值图像距离变换函数DistanceTransformProcess(WriteableBitmap src)

[算法说明]

 二值图像的距离变换实际上就是将二值图像转换为灰度图像,在二值图像中我们将图像分为目标图像和背景图像,假设目标图像像素值为1,即为白色,背景像素为0即为黑色。在转换后的幅灰度图像中,每个连通域的各个像素点的灰度级与该像素点到其背景像素的最近距离有关。其中灰度级最大点的集合为目标图像的骨架,就是目标图像中心部分的像素的集合,灰度级反应了背景像素与目标图像边界的影响关系。用数学语言表示如下:

 假设二值图像I包含一个连通域S,其中有目标O和背景B,距离图为D,则距离变换定义如下:

 

 

距离变换的具体步骤为:

     1,将图像中的目标像素点分类,分为内部点,外部点和孤立点。

以中心像素的四邻域为例,如果中心像素为目标像素(值为1)且四邻域都为目标像素(值为1),则该点为内部点。如果该中心像素为目标像素,四邻域为背景像素(值为0),则该中心点为孤立点,如下图所示。除了内部点和孤立点之外的目标区域点为边界点。

       6,对于孤立点保持不变。

 以上的距离变换方法由于计算量大,比较耗时,因此在实际应用中,我们采用一种倒角模版算法,只需要对图像进行两次扫描就可以实现距离变换。该方法称为Chamfer倒角距离变换法。

 该方法使用两个模版,分别为前向模版和后向模板,如下图所示:

 

 计算步骤如下:

 1,使用前向模板,对图像从上到下,从左到右进行扫描,模板中心0点对应的像素值如果为0则跳过,如果为1则计算模板中每个元素与其对应的像素值的和,分别为Sum1,Sum2,Sum3,Sum4Sum5,而中心像素值为这五个和值中的最小值。

 2,使用后向模板,对图像从下到上,从右到左进行扫描,方法同上。

 3,一般我们使用的模板为3*35*5,分别如下图所示:

 
 

[函数代码]

       ///<summary>

       /// Distance transform of binary image.

       ///</summary>

       ///<param name="src">The source image.</param>

       ///<returns></returns>

       publicstaticWriteableBitmap DistanceTransformProcess(WriteableBitmap src)25二值图像距离变换

       {

           if (src !=null)

           {

               int w = src.PixelWidth;

               int h = src.PixelHeight;

               WriteableBitmap expansionImage =newWriteableBitmap(w, h);

               byte[] temp = src.PixelBuffer.ToArray();

               int t1, t2, t3, t4, t5, min = 0;

               for (int y = 0; y < h; y++)

               {

                   for (int x = 0; x < w * 4 - 4; x += 4)

                   {

                       if (y == 0 || x == 0)

                       {

                           temp[x + y * w * 4] = 0;

                           temp[x + 1 + y * w * 4] = 0;

                           temp[x + 2 + y * w * 4] = 0;

                       }

                       else

                       {

                           if (temp[x + y * w * 4] != 0)

                           {

                               t1 = temp[x - 3 + (y - 1) * w * 4] + 4;

                               t2 = temp[x + (y - 1) * w * 4] + 3;

                               t3 = temp[x + 3 + (y - 1) * w * 4] + 4;

                               t4 = temp[x - 3 + y * w * 4] + 3;

                               t5 = temp[x + y * w * 4];

                               min = GetMin(t1, t2, t3, t4, t5);

                               temp[x + y * w * 4] = (byte)min;

                               temp[x + 1 + y * w * 4] = (byte)min; temp[x + 2 + y * w * 4] = (byte)min;

                           }

                           t2 = 0; t3 = 0; t4 = 0; t5 = 0; min = 0;

                       }

                   }

               }

               for (int y = h - 2; y > 0; y--)

               {

                   for (int x = w * 4 - 4; x > 0; x -= 4)

                   {

                       if (y == 1 || x == 3)

                       {

                           temp[x + y * w * 4] = 0;

                           temp[x + 1 + y * w * 4] = 0;

                           temp[x + 2 + y * w * 4] = 0;

                       }

                       else

                       {

                           if (temp[x + y * w * 4] != 0)

                           {

                               t1 = temp[x - 3 + (y + 1) * w * 4] + 4;

                               t2 = temp[x + (y + 1) * w * 4] + 3;

                               t3 = temp[x + 3 + (y + 1) * w * 4] + 4;

                               t4 = temp[x + 3 + y * w * 4] + 3;

                               t5 = temp[x + y * w * 4];

                               min = GetMin(t1, t2, t3, t4, t5);

                               temp[x + y * w * 4] = (byte)min;

                               temp[x + 1 + y * w * 4] = (byte)min; temp[x + 2 + y * w * 4] = (byte)min;

                           }

                           t2 = 0; t3 = 0; t4 = 0; t5 = 0; min = 0;

                       }

                   }

               }

               Stream sTemp = expansionImage.PixelBuffer.AsStream();

               sTemp.Seek(0, SeekOrigin.Begin);

               sTemp.Write(temp, 0, w * 4 * h);

               return expansionImage;

           }

           else

           {

               returnnull;

           }

       }

       privatestaticint GetMin(int a, int b,int c,int d,int e)

       {

           int t = (a < b ? a : b) < c ? (a < b ? a : b) : c;

           return ((t < d ? t : d) < e ? (t < d ? t : d) : e);

       }

[图像效果]

这篇关于Win8Metro(C#)数字图像处理--2.25二值图像距离变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924570

相关文章

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

C#和Unity中的中介者模式使用方式

《C#和Unity中的中介者模式使用方式》中介者模式通过中介者封装对象交互,降低耦合度,集中控制逻辑,适用于复杂系统组件交互场景,C#中可用事件、委托或MediatR实现,提升可维护性与灵活性... 目录C#中的中介者模式详解一、中介者模式的基本概念1. 定义2. 组成要素3. 模式结构二、中介者模式的特点

C#中SortedSet的具体使用

《C#中SortedSet的具体使用》SortedSet是.NETFramework4.0引入的一个泛型集合类,它实现了一个自动排序的集合,内部使用红黑树数据结构来维护元素的有序性,下面就来介绍一下如... 目录基础概念主要特性创建和初始化基本创建方式自定义比较器基本操作添加和删除元素查询操作范围查询集合运

C# Opacity 不透明度的具体使用

《C#Opacity不透明度的具体使用》本文主要介绍了C#Opacity不透明度的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录WinFormsOpacity以下是一些使用Opacity属性的示例:设置窗体的透明度:设置按钮的透

C#控制台程序同步调用WebApi实现方式

《C#控制台程序同步调用WebApi实现方式》控制台程序作为Job时,需同步调用WebApi以确保获取返回结果后执行后续操作,否则会引发TaskCanceledException异常,同步处理可避免异... 目录同步调用WebApi方法Cls001类里面的写法总结控制台程序一般当作Job使用,有时候需要控制