使用Python比较两张人脸图像并获得准确度

2024-04-21 23:04

本文主要是介绍使用Python比较两张人脸图像并获得准确度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用 Python、OpenCV 和人脸识别模块比较两张图像并获得这些图像之间的准确度水平。

一、原理

使用Face Recognition python 模块来获取两张图像的128 个面部编码,并比较这些编码。比较结果返回 True 或 False。如果结果为True ,那么两个图像将是相同的。如果是False,则两个图像将不相同。

二、128 种面部编码

仅当比较结果返回 True 值时,才会打印准确度级别。

三、实现

首先在conda中或终端安装需要的模块

pip install opencv-python
pip install face-recognition

安装后导入模块

创建一个名为 find_face_encodings(image_path) 的新函数,它获取图像位置(路径)并返回 128 个面部编码,这在比较图像时非常有用。

find_face_encodings(image_path) 函数将使用 OpenCV 模块,从我们作为参数传递的路径中读取图像,然后返回使用 face_recognition 模块中的 face_encodings() 函数获得的 128 个人脸编码。使用两个不同的图像路径调用 find_face_encodings(image_path) 函数,并将其存储在两个不同的变量中,image_1和image_2

import cv2
import face_recognition
def find_face_encodings(image_path):# reading imageimage = cv2.imread(image_path)# get face encodings from the imageface_enc = face_recognition.face_encodings(image)# return face encodingsreturn face_enc[0]
# getting face encodings for first image
image_1 = find_face_encodings("image_1.jpg")# getting face encodings for second image
image_2  = find_face_encodings("image_2.jpg")

现在,我们可以使用编码执行比较和查找这些图像的准确性等操作。

  • 比较将通过使用 face_recognition 中的 compare_faces() 函数来完成。

  • 通过找到 100 和 face_distance 之间的差异来确定准确性。

# checking both images are same
is_same = face_recognition.compare_faces([image_1], image_2)[0]
print(f"Is Same: {is_same}")
if is_same:# finding the distance level between imagesdistance = face_recognition.face_distance([image_1], image_2)distance = round(distance[0] * 100)# calcuating accuracy level between imagesaccuracy = 100 - round(distance)print("The images are same")print(f"Accuracy Level: {accuracy}%")
else:print("The images are not same")

参考链接:https://blog.csdn.net/woshicver/article/details/12860789

这篇关于使用Python比较两张人脸图像并获得准确度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924258

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.