计算机组成原理【CO】Ch7 I/O大题

2024-04-21 12:44

本文主要是介绍计算机组成原理【CO】Ch7 I/O大题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 

I/O大题解题方法

I/O接口

各种I/O方式的特点

 I/O端口编址

程序查询方式

中断控制方式 

DMA控制方式

程序中断的工作流程

程序中断的工作流程

DMA方式和中断方式的区别

 

 


I/O大题解题方法

CPU

  • 程序查询
  • 中断
  • DMA

I/O接口的类型

  • 按字传输:每次传输一个字
    • 程序查询
    • 中断
  • 按块传输:每次传输一整块
    • DMA

设备

  • 霸道总裁型:
    • IO设备按自己的节奏往IO缓冲区冲入数据
    • 如果CPU不及时取走数据,就可能会导致数据的丢失
  • 乖乖听话型:
    • IO设备会根据CPU的指挥,往IO缓冲区冲入数据
    • CPU从缓冲区中取走一个字的数据后,会指挥IO设备输入下一个字的数据,不会有数据丢失的问题

传输总线

  • 并行:多位一起传
  • 串行:
    • 一位一传
    • 可能会有附加的校验位、起始位、结束位

CPU每次介入的动作

  • 程序查询方式
    • 每次检查IO接口的数据是否准备完毕
    • 一次程序查询的时间开销:需要执行多少指令?需要多少个时钟周期?
    • CPU的介入频率
      • 取决于查询程序上CPU的时间频率
  • 中断控制方式
    • 中断响应(隐指令)
      • 时间开销
      • 通常以时钟数作为条件
    • 中断服务程序
      • 时钟数
      • 指令总数、结合CPI
    • CPU介入的频率
      • 取决于IO接口发来中断的频率
  • DMA控制方式
    • 预处理
      • 让DMA接口输入一块数据
    • 后处理
      • 一整块数据传输完成后DMA接口给CPU中断,CPU处理中断
    • CPU介入的频率
      • 每传一块介入一次

数据丢失问题

  • 程序查询方式
    • 当IO接口缓冲区大小有限时,每一次数据冲入后,CPU都需要及时把数据取走,防止丢失
    • 若CPU每次查询的时间开销太久,跟不上数据冲入的速度,则数据可能丢失
  • 中断控制方式
    • 判断是否会数据丢失:中断处理的时间总共花了多少?是否大于IO接口冲入一次数据的时间?
    • 若中断处理的时间太久,可能导致IO接口数据被覆盖
  • DMA控制方式
    • 不会数据丢失,DMA接口的总线使用优先级高

I/O接口

I/O接口【也叫I/O控制器】

I/O接口的功能

  • 地址译码、设备选择:通过CPU中来的外设的地址码,找到指定的设备
  • 主机和外设的通信联络控制:时序配合,协调不同工作速度的外设和主机之间交换信息
  • 数据缓冲:CPU与外设之间的速度不匹配,设置数据缓冲寄存器,避免丢失数据
  • 信号格式的转换:电平转换、串/并转换、数/模转换
  • 控制命令、状态信息
    • CPU要启动外设时,通过I/O接口重点命令寄存器向外设发出启动命令
    • 外设准备就绪后,将“准备好”的转台信息送回I/O接口中的状态寄存器,并反馈给CPU

I/O接口的基本结构

  • 端口(Port):接口电路中可以进行读写的寄存器
  • 接口(Interface):若干端口加上相应的控制逻辑
  • I/O指令:对数据缓冲寄存器、状态/控制寄存器的进行访问操作的指令
    • 只能在OS内核的底层I/O软件中使用
    • I/O指令实现的数据传送通常发生在通用寄存器和I/O端口之间
    • 是一种特权指令
  • 数据线:【双向传输】
    • 命令字、状态字、中断类型号
    • 外设将状态信息传中到CPU
    • CPU对外设的控制命令
    • 发往CPU的中断类型号
    • 【因为是从外部设备传输到CPU,故只能从数据线传输】
  • 地址线:【单向传输】
    • 要访问的I/O接口中的寄存器的地址
  • 控制线:【单向传输】
    • 仲裁信号
    • 握手信号
  • I/O总线:
    • 控制线、地址线:单向传输,从CPU传送给IO接口
    • 数据线:双向传输,命令字、状态字、中断类型号均是IO接口发往CPU

I/O接口的类型

按数据传输方式分

📢接口要完成数据格式的转换

📢这里的数据传送方式是指外设和接口一侧的传送方式

  • 并行接口:一个字节或一个字的所有位同时传送
  • 串行接口:一位一位地传送

按主机访问I/O设备的控制方式分

  • 程序查询接口
  • 中断接口
  • DMA接口

按功能选择的灵活性分

  • 可编程接口
  • 不可编程接口

 

常见的I/O接口:打印机适配器、网络控制器、可编程中断控制器

各种I/O方式的特点

程序查询

完全采用软件的方式实现。

中断方式

通过中断服务程序实现数据传送,但中断处理需要相关硬件的实现。

DMA方式

完全采用硬件控制数据交换的过程。

通道

采用软硬件结合的方法,通过执行通道程序(由通道指令组成)控制数据交换的过程。

 I/O端口编址

 

统一编址(存储器映射方式)

独立编址(I/O映射方式)

定义

  • 把I/O端口当做存储器的单元进行地址分配
  • CPU不需要设置专门的I/O指令,用统一的访存指令就可以访问I/O端口
  • I/O端口的地址空间与主存地址空间无法从地址码的形式上区分
  • 需要设置专门的I/O指令来访存I/O端口

特点

  • 依靠地址码的不同区分存储单元和I/O设备
  • 通过专门的I/O指令来区分存储单元和I/O设备

优点

  • 不需要专门的I/O指令
  • 可以使CPU访问I/O的操作更灵活、更方便
  • 还可以使端口有较大的编址空间
  • 输入/输出指令与存储器指令有明显区别
  • 程序编制清晰,便于理解

缺点

  • 端口占用存储器地址,使内存容量变小
  • I/O设备进行数据输入/输出操作时,执行速度较慢
  • 输入/输出指令少,一般只能对端口进行传送操作
  • 尤其需要CPU提供存储器读/写、I/O设备读/写两组控制信号增
    加了控制的复杂性

程序查询方式

  • 程序查询方式
    • 每次检查IO接口的数据是否准备完毕
    • 一次程序查询的时间开销:需要执行多少指令?需要多少个时钟周期?
    • CPU的介入频率
      • 取决于查询程序上CPU的时间频率

中断控制方式 

  • 中断控制方式
    • 中断响应(隐指令)
      • 时间开销
      • 通常以时钟数作为条件
    • 中断服务程序
      • 时钟数
      • 指令总数、结合CPI
    • CPU介入的频率
      • 取决于IO接口发来中断的频率

DMA控制方式

  • DMA控制方式
    • 预处理
      • 让DMA接口输入一块数据
      • 数据传输前由DMA控制器请求总线的使用权
    • 数据传输:
      • DMA控制器直接控制总线完成
    • 后处理
      • 一整块数据传输完成后DMA接口给CPU传递中断信号,CPU处理中断
    • CPU介入的频率
      • 每传一介入一次
  • DMA请求 VS DMA中断:
    • 缓冲区充满请求一次
    • 一整块传输完中断一次

程序中断的工作流程

程序中断的工作流程

  • 中断请求
  • 中断响应判优
    • ⚠️中断的响应判优是硬件排队器实现的,是固定
    • 中断的处理优先级可以通过中断屏蔽技术动态调整
  • CPU响应中断的条件
  • 中断响应的过程:

DMA方式和中断方式的区别

DMA

中断方式

DMA方式靠硬件传送

中断方式靠程序【软件】传送

请求的是总线的使用权

请求的是CPU处理时间

DMA方式除了预处理和后处理,其他时候不占用CPU资源

中断方式是程序的切换,需要保护和恢复现场

对DMA请求的响应可以发生在每个机器周期结束时在取指周期、间址周期、执行周期后都可以【一个总线事务后】

对中断请求的响应只能发生在每条指令执行完毕时

即指令的执行周期后

DMA传送过程不需要CPU的干预,因此数据传输率非常高,适合于高速外设的成组数据传送

中断传送过程需要CPU的干预

DMA方式仅局限于传送数据块的I/O操作

中断方式具有对异常事件的处理能力

这篇关于计算机组成原理【CO】Ch7 I/O大题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/923111

相关文章

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

Android与iOS设备MAC地址生成原理及Java实现详解

《Android与iOS设备MAC地址生成原理及Java实现详解》在无线网络通信中,MAC(MediaAccessControl)地址是设备的唯一网络标识符,本文主要介绍了Android与iOS设备M... 目录引言1. MAC地址基础1.1 MAC地址的组成1.2 MAC地址的分类2. android与I

Spring框架中@Lazy延迟加载原理和使用详解

《Spring框架中@Lazy延迟加载原理和使用详解》:本文主要介绍Spring框架中@Lazy延迟加载原理和使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、@Lazy延迟加载原理1.延迟加载原理1.1 @Lazy三种配置方法1.2 @Component

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.