Huffman编码的Python的实现

2024-04-21 06:04
文章标签 python 实现 编码 huffman

本文主要是介绍Huffman编码的Python的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Huffman编码的Python的实现

基本原理及步骤

Huffman编码是一种贪心算法,用于无损数据压缩。它基于字符在数据中出现的频率来构建编码,频率高的字符使用较短的编码,而频率低的字符使用较长的编码。这种方式的目的是减少数据的大小,因为最常见的字符使用最短的编码,从而在整体上减少了所需的位数。
实现Huffman编码的原理如下:

  1. 频率统计
    • 如果输入数据是一个字符串,代码会遍历这个字符串,统计每个字符出现的次数。
    • 如果输入数据是一个字典,它应该包含字符及其对应的频率。代码会直接使用这个字典。
  2. 构建优先队列
    • 根据字符的频率,创建一个优先队列(最小堆),每个元素是一个列表,包含字符的频率和字符本身,以及一个初始为空的编码。
  3. 构建Huffman树
    • 当优先队列中至少有两个元素时,重复以下步骤:
      • 从队列中弹出两个具有最低频率的元素(它们将成为新的树的左右子节点)。
      • 创建一个新的内部节点,其频率是这两个节点频率的和。
      • 将这两个节点作为新节点的子节点,左节点的编码前缀为“0”,右节点的编码前缀为“1”。
      • 将新节点添加回优先队列。
    • 这个过程会一直重复,直到队列中只剩下一个元素,这个元素就是Huffman树的根节点。
  4. 生成Huffman编码
    • 一旦Huffman树构建完成,从根节点开始遍历树,为每个字符生成一个唯一的二进制编码。
    • 左子节点的路径标记为“0”,右子节点的路径标记为“1”。
  5. 编码数据
    • 使用生成的Huffman编码表,将原始数据中的每个字符替换为其对应的二进制编码。
    • 生成的二进制编码字符串就是压缩后的数据。
  6. 解码数据
    • 解码过程需要使用相同的Huffman编码表。
    • 从压缩数据开始,逐位读取,根据Huffman编码表回溯到对应的字符。
    • 每当找到一个匹配的编码,就将对应的字符添加到解码数据中,并继续处理剩余的位。
      Huffman编码的关键优势在于它是一种前缀编码方法,即没有任何一个编码是另一个编码的前缀,这确保了编码的唯一可解性。这种方法在理论上可以达到最小冗余度,即Shannon熵,是效率最高的编码方式之一。

python实现

import heapq  # 导入heapq模块,用于创建优先队列# 使用哈夫曼编码压缩文本数据的函数
def huffman_encode(data):"""使用哈夫曼编码压缩文本数据。:param data: 待压缩的文本数据:return: 压缩后的二进制数据和哈夫曼编码表"""if isinstance(data, str):# 如果data是一个字符串,计算每个字符的频率frequency = {}for char in data:frequency[char] = frequency.get(char, 0) + 1else:# 如果data是一个频率字典,检查其值的总和是否为1if sum(data.values()) != 1:raise ValueError("data is frequency `dict`,must sum values is 1 ")frequency = data# 创建优先队列,每个元素是一个列表 [weight, [char, code]]heap = [[weight, [char, ""]] for char, weight in frequency.items()]heapq.heapify(heap)  # 将列表转换为最小堆# 构建哈夫曼树while len(heap) > 1:lo = heapq.heappop(heap)  # 弹出权重最小的节点hi = heapq.heappop(heap)  # 弹出权重次小的节点for pair in lo[1:]:pair[1] = "0" + pair[1]  # 将左子节点的编码前缀设置为0for pair in hi[1:]:pair[1] = "1" + pair[1]  # 将右子节点的编码前缀设置为1heapq.heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])  # 合并节点并重新加入堆# 生成哈夫曼编码huffman_codes = {pair[0]: pair[1] for pair in heap[0][1:]}# 编码数据, 如果形参是频率字典,则会按照字典中字符的顺序输出encoded_data = "".join(huffman_codes[char] for char in data)return encoded_data, huffman_codes  # 返回压缩后的数据和编码表# 使用哈夫曼编码表解码压缩的二进制数据的函数
def huffman_decode(encoded_data, huffman_codes):"""使用哈夫曼编码表解码压缩的二进制数据。:param encoded_data: 压缩后的二进制数据:param huffman_codes: 哈夫曼编码表,其键是字符,值是对应的编码:return: 解码后的原始数据"""# 反转哈夫曼编码表,使得编码成为键,字符成为值reverse_codes = {code: char for char, code in huffman_codes.items()}# 初始化解码数据decoded_data = ""# 当前正在处理的编码片段current_code = ""# 遍历编码数据的每一位for bit in encoded_data:current_code += bit  # 添加当前位到编码片段# 检查当前编码片段是否在反转编码表中if current_code in reverse_codes:decoded_data += reverse_codes[current_code]  # 添加对应的字符到解码数据current_code = ""  # 重置编码片段return decoded_data  # 返回解码后的数据if __name__ == "__main__":# 示例# input_data = "ABRACADABRA!"input_data = {"A": 0.20,"B": 0.19,"C": 0.17,"D": 0.17,"E": 0.14,"F": 0.10,"G": 0.03,}# input_data = (#     "A" * 20 + "B" * 19 + "C" * 18 + "D" * 17 + "E" * 15 + "F" * 10 + "G" * 1# )# input_data = "ABBCCCDDDE"print("Original data:\t", input_data)encoded_data, huffman_codes = huffman_encode(input_data)print("Encoded data:\t", encoded_data)print("Huffman codes:\t", huffman_codes)decoded_data = huffman_decode(encoded_data, huffman_codes)print("Decoded data:\t", decoded_data)

输出如下:

Original data:   {'A': 0.2, 'B': 0.19, 'C': 0.17, 'D': 0.17, 'E': 0.14, 'F': 0.1, 'G': 0.03}
Encoded data:    010011011110110011000
Huffman codes:   {'B': '00', 'A': '01', 'G': '1000', 'F': '1001', 'E': '101', 'C': '110', 'D': '111'}
Decoded data:    ABCDEFG

这篇关于Huffman编码的Python的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922320

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法