皇后之战:揭秘N皇后问题的多维解法与智慧【python 力扣52题】

2024-04-21 03:36

本文主要是介绍皇后之战:揭秘N皇后问题的多维解法与智慧【python 力扣52题】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个整数 n,返回 n×n 棋盘上的 N 皇后问题的不同解决方案的数量。

每一种解法包含一个明确的 n×n 棋盘上的皇后放置方式,其中 'Q' 代表一个皇后,而 '.' 代表空位。每个皇后都必须满足不能与其他皇后在同一行、同一列或同一对角线上。

输入格式
  • n:一个整数,表示棋盘的大小。
输出格式
  • 返回所有独特的 n 皇后问题的解决方案数量。

示例

示例 1

在这里插入图片描述

输入: n = 4
输出: 2
示例 2
输入: n = 1
输出: 1

注意
LeetCode题目51 "N皇后"与题目52 "N皇后II"虽然都是基于经典的N皇后问题,但两者的主要区别在于输出的需求不同:

N皇后 (题目 51)

  • 目标:找出所有可能的N皇后解决方案的具体棋盘布局。
  • 输出:返回所有解决方案,每个解决方案都详细展示了皇后的具体摆放位置。每个解决方案是一个包含n个字符串的列表,每个字符串长度为n,表示棋盘的一行,其中’Q’表示皇后,'.'表示空位。
  • 解法关注点:除了求解算法的有效性外,还需要关注如何构造并展示完整的棋盘布局。

N皇后 II (题目 52)

  • 目标:仅计算N皇后问题的不同解决方案数量。
  • 输出:返回解决方案的数量,而不是具体的棋盘布局。
  • 解法关注点:主要关注于优化算法的效率以快速计算出解决方案的总数,而不需要构造棋盘的具体布局。
    解法对比
    尽管两个问题在解法上可能使用类似的技术(如回溯法),51题需要更多的空间和逻辑来存储和展示所有可能的棋盘配置,而52题则更注重于计数优化,可能会使用更加精简的数据结构(如位运算)来加速计数过程。

方法一:回溯算法

解题步骤
  1. 初始化变量:创建一个用于存储当前行皇后位置的列表。
  2. 定义回溯函数:递归定义函数以尝试每一行的每个位置。
  3. 合法性检查:检查当前位置放置皇后是否合法,即检查列和两个方向的对角线。
  4. 递归与计数:递归地放置下一个皇后,如果完成一种有效布局则增加计数。
完整的规范代码
def totalNQueens(n):"""计算 n 皇后问题的解决方案总数:param n: int, 棋盘大小:return: int, 解决方案总数"""def backtrack(row, diagonals, anti_diagonals, cols):if row == n:nonlocal countcount += 1returnfor col in range(n):curr_diagonal = row - colcurr_anti_diagonal = row + colif (col in cols or curr_diagonal in diagonals or curr_anti_diagonal in anti_diagonals):continuecols.add(col)diagonals.add(curr_diagonal)anti_diagonals.add(curr_anti_diagonal)backtrack(row + 1, diagonals, anti_diagonals, cols)cols.remove(col)diagonals.remove(curr_diagonal)anti_diagonals.remove(curr_anti_diagonal)count = 0backtrack(0, set(), set(), set())return count# 示例调用
print(totalNQueens(4))  # 输出: 2
算法分析
  • 时间复杂度:(O(n!)),尽管有剪枝,每层递归的选择数接近 n
  • 空间复杂度:(O(n)),递归栈深度加用于存储状态的空间。

方法二:位运算优化的回溯算法

解题步骤
  1. 位运算优化:使用位运算代替集合操作,提高效率。
  2. 定义位运算回溯函数:使用位掩码表示列和对角线的占用状态,通过位运算快速检查和修改状态。
  3. 递归与计数:递归放置皇后,完成布局时增加解决方案计数。
完整的规范代码
def totalNQueens(n):"""计算 n 皇后问题的解决方案总数,使用位运算进行优化:param n: int, 棋盘大小:return: int, 解决方案总数"""def solve(row, hills, next_row, dales):if row == n:nonlocal countcount += 1returnfree_columns = columns & ~(hills | next_row | dales)while free_columns:curr_column = -free_columns & free_columnssolve(row + 1, (hills | curr_column) << 1, next_row | curr_column, (dales | curr_column) >> 1)free_columns &= free_columns - 1columns = (1 << n) - 1count = 0solve(0, 0, 0, 0)return count# 示例调用
print(totalNQueens(4))  # 输出: 2
算法分析
  • 时间复杂度:(O(n!)),位运算显著提高了效率,但最坏情况下仍需尝试所有可能。
  • 空间复杂度:(O(n)),递归深度决定了空间复杂度,虽然使用位运算减少了空间占用。

方法三:迭代回溯

解题步骤
  1. 使用栈模拟递归:使用栈来模拟递归过程,避免函数调用的开销。
  2. 迭代处理:在迭代中管理棋盘状态和递归变量,以模拟递归调用栈的行为。
完整的规范代码
def totalNQueens(n):"""使用迭代回溯解决 n 皇后问题:param n: int, 棋盘大小:return: int, 解决方案总数"""stack = [(0, 0, 0, 0)]  # (row, hills, next_row, dales)count = 0while stack:row, hills, next_row, dales = stack.pop()if row == n:count += 1continuefree_columns = ((1 << n) - 1) & ~(hills | next_row | dales)while free_columns:curr_column = -free_columns & free_columnsstack.append((row + 1, (hills | curr_column) << 1, next_row | curr_column, (dales | curr_column) >> 1))free_columns &= free_columns - 1return count# 示例调用
print(totalNQueens(4))  # 输出: 2
算法分析
  • 时间复杂度:(O(n!)),迭代的方式减少了递归调用开销,但仍然需要尝试所有可能的放置方式。
  • 空间复杂度:(O(n)),虽然使用栈来模拟递归,但空间复杂度与递归方法相当。

不同算法的优劣势对比

特征方法一: 回溯算法方法二: 位运算优化回溯方法三: 迭代回溯
时间复杂度(O(n!))(O(n!))(O(n!))
空间复杂度(O(n))(O(n))(O(n))
优势- 易于理解和实现- 空间效率高- 避免递归调用开销
劣势- 空间消耗较大- 理解和实现较为复杂- 状态维护较为复杂

应用示例

科学研究
N皇后问题常用于算法研究和教学,特别是在探讨组合数学、算法优化、复杂度分析等领域。此问题的不同解决策略可用于教授递归、回溯及其优化。

算法竞赛
在算法竞赛中,N皇后问题是经典问题,经常出现在各类比

赛和面试中,作为测试程序员解决复杂问题能力的一种方式。

通过以上方法和示例,可以深入理解和掌握N皇后问题的多种解决方案及其应用场景。这些技术不仅限于此问题,还可广泛应用于其他需要递归和回溯解决的问题中。

这篇关于皇后之战:揭秘N皇后问题的多维解法与智慧【python 力扣52题】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922067

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息