mpu6050姿态解算与卡尔曼滤波(5)可应用于51单片机的卡尔曼滤波器

2024-04-20 23:28

本文主要是介绍mpu6050姿态解算与卡尔曼滤波(5)可应用于51单片机的卡尔曼滤波器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

博客4中给出的滤波器状态维数为4维,测量量为3维,每次滤波需要做不少矩阵乘法和求逆运算。如果想在51单片机上实现,计算耗时会比较长。考虑应用场合可以对滤波器适当做一些简化,计算量会大大减小。
首先,陀螺和加速度计融合只能保证俯仰和滚转角收敛,而且从测量方程来看,加速度计的测量只与俯仰和滚转角有关。因此可以考虑滤波器状态选取为俯仰角 θ \theta θ和滚转角 γ \gamma γ,这样状态维数会减少。选取状态为俯仰角和滚转角带来的问题是状态方程必须使用欧拉角微分方程,而欧拉角微分方程中包含三角函数计算,反而增加了计算量。
[ ψ ˙ θ ˙ γ ˙ ] = 1 cos ⁡ θ [ − sin ⁡ γ 0 cos ⁡ γ cos ⁡ γ cos ⁡ θ 0 sin ⁡ γ cos ⁡ θ sin ⁡ θ sin ⁡ γ cos ⁡ θ − sin ⁡ θ cos ⁡ γ ] [ ω n b x b ω n b y b ω n b z b ] \begin{bmatrix}\dot\psi\\\dot\theta\\\dot\gamma\end{bmatrix}=\frac{1}{\cos\theta}\begin{bmatrix}-\sin\gamma&0&\cos\gamma\\ \cos\gamma\cos\theta&0&\sin\gamma\cos\theta\\ \sin\theta\sin\gamma&\cos\theta&-\sin\theta\cos\gamma\end{bmatrix}\begin{bmatrix}\omega_{nbx}^b\\\omega_{nby}^b\\\omega_{nbz}^b\end{bmatrix} ψ˙θ˙γ˙ =cosθ1 sinγcosγcosθsinθsinγ00cosθcosγsinγcosθsinθcosγ ωnbxbωnbybωnbzb
这种情况下考虑滤波器的应用场合。如果在滤波器运行过程中能保证 θ \theta θ γ \gamma γ基本保持在0±5°附近,那么欧拉角微分方程可以简化为
[ ψ ˙ θ ˙ γ ˙ ] = [ − γ 0 1 1 0 γ θ γ 1 − θ ] [ ω n b x b ω n b y b ω n b z b ] \begin{bmatrix}\dot\psi\\\dot\theta\\\dot\gamma\end{bmatrix}=\begin{bmatrix}-\gamma&0&1\\ 1&0&\gamma\\ \theta\gamma&1&-\theta\end{bmatrix}\begin{bmatrix}\omega_{nbx}^b\\\omega_{nby}^b\\\omega_{nbz}^b\end{bmatrix} ψ˙θ˙γ˙ = γ1θγ0011γθ ωnbxbωnbybωnbzb
这样状态方程就变得十分简单,可以只取 θ \theta θ γ \gamma γ。对于 θ \theta θ γ \gamma γ保持在0±5°附近的假设在一些场合下是适用的,比如平衡车、自动保持水平模式的四轴,当然前提是控制可以闭环。
对于测量方程,也可简化为
[ a x a y a z ] = [ − g γ g θ g ] \begin{bmatrix}a_x\\a_y\\a_z\end{bmatrix}=\begin{bmatrix}-g\gamma \\g\theta\\g\end{bmatrix} axayaz = gγgθg
测量量只取 a x a_x ax a y a_y ay
这样一来状态和测量方程都变得十分简单,计算量也大大减小,应用在51这样的单片机上也能在10ms内完成姿态解算。

这篇关于mpu6050姿态解算与卡尔曼滤波(5)可应用于51单片机的卡尔曼滤波器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/921604

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.