【动态规划】C++简单多状态dp问题(打家劫舍、粉刷房子、买卖股票的最佳时机...)

本文主要是介绍【动态规划】C++简单多状态dp问题(打家劫舍、粉刷房子、买卖股票的最佳时机...),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 1. 前言 - 理解动态规划算法
  • 2. 关于 简单多状态的dp问题
    • 2.5 例题
    • 按摩师/打家劫舍
  • 3. 算法题
    • 3.1_打家劫舍II
    • 3.2_删除并获得点数
    • 3.3_粉刷房子
    • 3.4_买卖股票的最佳时机含冷冻期
    • 3.5_买卖股票的最佳时机含手续费
    • 3.6_买卖股票的最佳时机III
    • 3.7_买卖股票的最佳时机IV

前言

1. 前言 - 理解动态规划算法

关于 动态规划的理解 与例题,点击👇

【动态规划】C++解决斐波那契模型题目(三步问题、爬楼梯、解码方法…)

有了上面的经验,我们来解下面 简单多状态的dp问题


2. 关于 简单多状态的dp问题

对于该类问题,对于某一时刻、位置一般有 多种状态 (>=2),所以我们一般会采用一些方法:

  1. 创建多个dp数组表示每种状态
  2. 创建多维数组表示时刻的不同状态

2.5 例题

下面的算法题为一道例题,通过该题我们看对该类题的解法进行熟悉。

按摩师/打家劫舍

在这里插入图片描述

思路

  • 题意分析

    1. 对于该题,我们首先知道按摩师在某个时间段可以选择服务或者不服务,即 两种状态
    2. 而每进行一次服务就需要休息一天,我们需要找到最优的服务策略:即预约时常最长

所以我们创建两个dp数组,来进行状态转移方程的编写:

在这里插入图片描述
在这里插入图片描述

代码

class Solution {
public:int massage(vector<int>& nums) {int m = nums.size();// 边界条件if(m == 0) return 0;// dp[i]: 在i位置时的最长预约时间// f[i] 选择当前位置 g[i] 不选择当前位置(i位置)vector<int> f(m);auto g = f;// 初始化f[0] = nums[0]; // g[0] = 0; 默认为0for(int i = 1; i < m; ++i){f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);}return max(f[m-1], g[m-1]);}
};

3. 算法题

3.1_打家劫舍II

在这里插入图片描述

思路

  • 题意分析
    1. 对于该题,小偷对每一家可以选择偷或者不偷,即 两种状态
      又相邻的房屋不能同时被闯入(数组首位也算相邻),找能偷窃的最大金额。
    2. 从上面的分析,可以看出来该题和按摩师一题很像,区别在于数组首尾位置不能同时选择
    • 如何解决这一点?
      • 我们只需要分别算出来选择0位置和不选0位置的两种情况并求最大值即可。
      • 而其余部分和《按摩师》没有区别,下面简单写状态转移方程的分析:

在这里插入图片描述

代码

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();return max((nums[0] + _rob(nums, 2, n-2)), _rob(nums, 1, n-1));}// 打家劫舍I(按摩师) 的思路int _rob(vector<int>& nums, int left, int right){if(left > right) return 0; // 边界判断vector<int> f(nums.size());auto g = f;f[left] = nums[left]; // 初始化for(int i = left + 1; i <= right; ++i){f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);}return max(f[right], g[right]);}
};

3.2_删除并获得点数

在这里插入图片描述

思路

  • 题意分析
    1. 根据题意,我们可以知道,我们每次选择一个nums[i]删除并记录点数,后需要将相邻为1的数一并删除。
    2. 即不能同时统计相邻的位置的点数,很像按摩师(打家劫舍)的思路
  • 我们可以对数组进行预处理:

在这里插入图片描述
如图所示,此时对arr进行之前的代码操作即可。

代码

class Solution {
public:int deleteAndEarn(vector<int>& nums) {const int N = 10001;// 预处理数组 - 下标i对应 i在nums中的的总和vector<int> arr(N);for(int num : nums) arr[num] += num;// 在arr数组上 进行打家劫舍的操作// 创建dp数组vector<int> f(N);auto g = f;for(int i = 1; i < N; ++i){f[i] = g[i - 1] + arr[i];g[i] = max(g[i - 1], f[i - 1]);}return max(f[N-1], g[N-1]);}
};

3.3_粉刷房子

在这里插入图片描述

思路

  • 题意分析
    1. 对于该题,我们知道相邻房子的颜色不能相同,而每间房子都可以涂三种颜色,即 三种状态 ,我们可以用一个二维数组dp[i][j],其中j = 0, 1, 2分别代表三种颜色。

有了上面的思路,下面就可以进行解题了:

在这里插入图片描述

代码

class Solution {
public:int minCost(vector<vector<int>>& costs) {// dp[i][0] 在i层,刷红色漆时的最小花费// dp[i][1] 在i层,刷蓝色漆时的最小花费// dp[i][2] 在i层,刷绿色漆时的最小花费int m = costs.size(); // 只有三列 n = 3vector<vector<int>> dp(m+1, vector<int>(3));for(int i = 1; i <= m; ++i){dp[i][0] = min(dp[i-1][1], dp[i-1][2]) + costs[i-1][0]; // 映射下标dp[i][1] = min(dp[i-1][0], dp[i-1][2]) + costs[i-1][1];dp[i][2] = min(dp[i-1][0], dp[i-1][1]) + costs[i-1][2];}return min(min(dp[m][0], dp[m][1]), dp[m][2]);}
};

3.4_买卖股票的最佳时机含冷冻期

在这里插入图片描述

思路

  • 题意分析
    1. 对于该题,每天的状态可能是:买入、卖出、冷冻期;相当于共有 三种状态 ,我们按照《粉刷房子》的思路创建二维dp数组。
    2. 当一天处于卖出状态时,实际上就是可交易,对于《粉刷房子》的要求是不能有连续相同的颜色,对于本题的要求自然不能有连续相同的状态,其他的通过下图得出:

下面画图找状态表示,以及通过三种状态的关系写状态转移方程

在这里插入图片描述

  • 关于初始化:
    1. dp[0][0] = -p[0] 第一天为“买入”,买入后此时钱包是负的
    2. dp[0][1] = dp[0][0] = 0
  • 关于返回值
    • max(dp[m - 1][1], dp[m - 1][2]):最后一天可以是卖出状态,可以是冷冻期、不可以是买入状态,两状态取最大值。

代码

class Solution {
public:int maxProfit(vector<int>& prices) {// dp[i][0]: 第i天时,为“买入状态“的最大利润// dp[i][1]: 第i天时,为“可交易状态”的最大利润// dp[i][2]: 第i天时,为“冷冻期”的最大利润int m = prices.size();vector<vector<int>> dp(m, vector<int>(3));dp[0][0] = -prices[0]; // 初始化for(int i = 1; i < m; ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];}return max(dp[m - 1][1], dp[m - 1][2]); // dp[m-1][0];最后不能是买入状态}
};

3.5_买卖股票的最佳时机含手续费

在这里插入图片描述

思路

  • 题意分析

    1. 根据题目,我们知道每一天有“买入”和“卖出”,即 两种状态 ,可以创建两个dp数组。
    2. 本题与前面《冷冻期》的差别在于,该题在卖出后,不存在冷冻期,第二天可以继续交易,但是需要考虑手续费,下面根据图得出关系:
  • 下面通过分析两种状态的关系,写出状态转移方程
    在这里插入图片描述

  • 关于初始化:

    • 根据买入状态与卖出状态,f[0] = -price[0], g[0] = 0;
  • 填表顺序:

    • 两个表均从左向右
  • 返回值

    • max(f[n-1], g[n-1])

代码

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int m = prices.size();// 预处理dp数组vector<int> f(m);auto g = f;// 初始化f[0] = -prices[0];for(int i = 1; i < m; ++i){f[i] = max(g[i-1] - prices[i], f[i-1]);g[i] = max(f[i-1] + prices[i] - fee, g[i-1]);}return g[m-1]; // 利润最大,自然最后一天不能选择买入,即不能是f[m-1]}
};

3.6_买卖股票的最佳时机III

在这里插入图片描述

思路

  • 题意分析

    1. 本题不需要考虑冷冻期、手续费,但加上了一个限制条件,即最多只能完成两笔交易,求最大利润(进行0次交易也是可以的,只要利润最大)
    2. 此时我们不但需要考虑某一天的状态,也需要考虑当前完成了几笔交易
  • 首先找状态表示与状态转移方程:
    在这里插入图片描述

  • 随后内容初始化以及其余细节问题:

在这里插入图片描述

代码

class Solution {
public:const int INF = 0x3f3f3f3f; // INT_MAX的1/2int maxProfit(vector<int>& prices) {int n = prices.size();// 创建dp数组vector<vector<int>> f(n, vector<int>(3, -INF));auto g = f; // i位置时,进行了j笔交易,最后状态为卖出的最大利润// 初始化元素f[0][0] = -prices[0], g[0][0] = 0;// 计算for(int i = 1; i < n; ++i){for(int j = 0; j < 3; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);// g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]):需要初始化g[i]的一行一列// 通过修改状态转移方程,只需要初始化一行g[i][j] = g[i-1][j];if(j - 1 >= 0) g[i][j] = max(g[i][j], f[i-1][j-1] + prices[i]);}}// 找最后一行最大值int ret = 0;for(int k = 0; k < 3; ++k)ret = max(ret, g[n - 1][k]);return ret;}
};

3.7_买卖股票的最佳时机IV

在这里插入图片描述

思路

  • 题意分析 相比于前一题,该题的改动就是将买卖次数定为k次,其余条件不变,求最大利润。
  • 故只需更改之前代码中的条件即可,将次数设为k次。
  • 不再画图,思路同前。

代码

class Solution {
public:const int INF = 0x3f3f3f3f;int maxProfit(int k, vector<int>& prices) {int n = prices.size();k = min(k, n/2); // 最多交易n/2次vector<vector<int>> f(n, vector<int>(k+1, -INF)); // 第i天交易了j次、且为买入状态的最大利润auto g = f; // 第i天交易了j次、且为“卖出”状态的最大利润f[0][0] = -prices[0], g[0][0] = 0; // 初始化for(int i = 1; i < n; ++i)for(int j = 0; j <= k; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = g[i-1][j];if(j-1 >= 0) g[i][j] = max(g[i][j], f[i-1][j-1] + prices[i]); // f[i-1][j-1] j-1: 记录一次交易次数}int ret = 0;for(int j = 0; j <= k; ++j)ret = max(ret, g[n-1][j]);return ret;}
};

这篇关于【动态规划】C++简单多状态dp问题(打家劫舍、粉刷房子、买卖股票的最佳时机...)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920702

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码