【动态规划】C++简单多状态dp问题(打家劫舍、粉刷房子、买卖股票的最佳时机...)

本文主要是介绍【动态规划】C++简单多状态dp问题(打家劫舍、粉刷房子、买卖股票的最佳时机...),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 1. 前言 - 理解动态规划算法
  • 2. 关于 简单多状态的dp问题
    • 2.5 例题
    • 按摩师/打家劫舍
  • 3. 算法题
    • 3.1_打家劫舍II
    • 3.2_删除并获得点数
    • 3.3_粉刷房子
    • 3.4_买卖股票的最佳时机含冷冻期
    • 3.5_买卖股票的最佳时机含手续费
    • 3.6_买卖股票的最佳时机III
    • 3.7_买卖股票的最佳时机IV

前言

1. 前言 - 理解动态规划算法

关于 动态规划的理解 与例题,点击👇

【动态规划】C++解决斐波那契模型题目(三步问题、爬楼梯、解码方法…)

有了上面的经验,我们来解下面 简单多状态的dp问题


2. 关于 简单多状态的dp问题

对于该类问题,对于某一时刻、位置一般有 多种状态 (>=2),所以我们一般会采用一些方法:

  1. 创建多个dp数组表示每种状态
  2. 创建多维数组表示时刻的不同状态

2.5 例题

下面的算法题为一道例题,通过该题我们看对该类题的解法进行熟悉。

按摩师/打家劫舍

在这里插入图片描述

思路

  • 题意分析

    1. 对于该题,我们首先知道按摩师在某个时间段可以选择服务或者不服务,即 两种状态
    2. 而每进行一次服务就需要休息一天,我们需要找到最优的服务策略:即预约时常最长

所以我们创建两个dp数组,来进行状态转移方程的编写:

在这里插入图片描述
在这里插入图片描述

代码

class Solution {
public:int massage(vector<int>& nums) {int m = nums.size();// 边界条件if(m == 0) return 0;// dp[i]: 在i位置时的最长预约时间// f[i] 选择当前位置 g[i] 不选择当前位置(i位置)vector<int> f(m);auto g = f;// 初始化f[0] = nums[0]; // g[0] = 0; 默认为0for(int i = 1; i < m; ++i){f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);}return max(f[m-1], g[m-1]);}
};

3. 算法题

3.1_打家劫舍II

在这里插入图片描述

思路

  • 题意分析
    1. 对于该题,小偷对每一家可以选择偷或者不偷,即 两种状态
      又相邻的房屋不能同时被闯入(数组首位也算相邻),找能偷窃的最大金额。
    2. 从上面的分析,可以看出来该题和按摩师一题很像,区别在于数组首尾位置不能同时选择
    • 如何解决这一点?
      • 我们只需要分别算出来选择0位置和不选0位置的两种情况并求最大值即可。
      • 而其余部分和《按摩师》没有区别,下面简单写状态转移方程的分析:

在这里插入图片描述

代码

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();return max((nums[0] + _rob(nums, 2, n-2)), _rob(nums, 1, n-1));}// 打家劫舍I(按摩师) 的思路int _rob(vector<int>& nums, int left, int right){if(left > right) return 0; // 边界判断vector<int> f(nums.size());auto g = f;f[left] = nums[left]; // 初始化for(int i = left + 1; i <= right; ++i){f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);}return max(f[right], g[right]);}
};

3.2_删除并获得点数

在这里插入图片描述

思路

  • 题意分析
    1. 根据题意,我们可以知道,我们每次选择一个nums[i]删除并记录点数,后需要将相邻为1的数一并删除。
    2. 即不能同时统计相邻的位置的点数,很像按摩师(打家劫舍)的思路
  • 我们可以对数组进行预处理:

在这里插入图片描述
如图所示,此时对arr进行之前的代码操作即可。

代码

class Solution {
public:int deleteAndEarn(vector<int>& nums) {const int N = 10001;// 预处理数组 - 下标i对应 i在nums中的的总和vector<int> arr(N);for(int num : nums) arr[num] += num;// 在arr数组上 进行打家劫舍的操作// 创建dp数组vector<int> f(N);auto g = f;for(int i = 1; i < N; ++i){f[i] = g[i - 1] + arr[i];g[i] = max(g[i - 1], f[i - 1]);}return max(f[N-1], g[N-1]);}
};

3.3_粉刷房子

在这里插入图片描述

思路

  • 题意分析
    1. 对于该题,我们知道相邻房子的颜色不能相同,而每间房子都可以涂三种颜色,即 三种状态 ,我们可以用一个二维数组dp[i][j],其中j = 0, 1, 2分别代表三种颜色。

有了上面的思路,下面就可以进行解题了:

在这里插入图片描述

代码

class Solution {
public:int minCost(vector<vector<int>>& costs) {// dp[i][0] 在i层,刷红色漆时的最小花费// dp[i][1] 在i层,刷蓝色漆时的最小花费// dp[i][2] 在i层,刷绿色漆时的最小花费int m = costs.size(); // 只有三列 n = 3vector<vector<int>> dp(m+1, vector<int>(3));for(int i = 1; i <= m; ++i){dp[i][0] = min(dp[i-1][1], dp[i-1][2]) + costs[i-1][0]; // 映射下标dp[i][1] = min(dp[i-1][0], dp[i-1][2]) + costs[i-1][1];dp[i][2] = min(dp[i-1][0], dp[i-1][1]) + costs[i-1][2];}return min(min(dp[m][0], dp[m][1]), dp[m][2]);}
};

3.4_买卖股票的最佳时机含冷冻期

在这里插入图片描述

思路

  • 题意分析
    1. 对于该题,每天的状态可能是:买入、卖出、冷冻期;相当于共有 三种状态 ,我们按照《粉刷房子》的思路创建二维dp数组。
    2. 当一天处于卖出状态时,实际上就是可交易,对于《粉刷房子》的要求是不能有连续相同的颜色,对于本题的要求自然不能有连续相同的状态,其他的通过下图得出:

下面画图找状态表示,以及通过三种状态的关系写状态转移方程

在这里插入图片描述

  • 关于初始化:
    1. dp[0][0] = -p[0] 第一天为“买入”,买入后此时钱包是负的
    2. dp[0][1] = dp[0][0] = 0
  • 关于返回值
    • max(dp[m - 1][1], dp[m - 1][2]):最后一天可以是卖出状态,可以是冷冻期、不可以是买入状态,两状态取最大值。

代码

class Solution {
public:int maxProfit(vector<int>& prices) {// dp[i][0]: 第i天时,为“买入状态“的最大利润// dp[i][1]: 第i天时,为“可交易状态”的最大利润// dp[i][2]: 第i天时,为“冷冻期”的最大利润int m = prices.size();vector<vector<int>> dp(m, vector<int>(3));dp[0][0] = -prices[0]; // 初始化for(int i = 1; i < m; ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];}return max(dp[m - 1][1], dp[m - 1][2]); // dp[m-1][0];最后不能是买入状态}
};

3.5_买卖股票的最佳时机含手续费

在这里插入图片描述

思路

  • 题意分析

    1. 根据题目,我们知道每一天有“买入”和“卖出”,即 两种状态 ,可以创建两个dp数组。
    2. 本题与前面《冷冻期》的差别在于,该题在卖出后,不存在冷冻期,第二天可以继续交易,但是需要考虑手续费,下面根据图得出关系:
  • 下面通过分析两种状态的关系,写出状态转移方程
    在这里插入图片描述

  • 关于初始化:

    • 根据买入状态与卖出状态,f[0] = -price[0], g[0] = 0;
  • 填表顺序:

    • 两个表均从左向右
  • 返回值

    • max(f[n-1], g[n-1])

代码

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int m = prices.size();// 预处理dp数组vector<int> f(m);auto g = f;// 初始化f[0] = -prices[0];for(int i = 1; i < m; ++i){f[i] = max(g[i-1] - prices[i], f[i-1]);g[i] = max(f[i-1] + prices[i] - fee, g[i-1]);}return g[m-1]; // 利润最大,自然最后一天不能选择买入,即不能是f[m-1]}
};

3.6_买卖股票的最佳时机III

在这里插入图片描述

思路

  • 题意分析

    1. 本题不需要考虑冷冻期、手续费,但加上了一个限制条件,即最多只能完成两笔交易,求最大利润(进行0次交易也是可以的,只要利润最大)
    2. 此时我们不但需要考虑某一天的状态,也需要考虑当前完成了几笔交易
  • 首先找状态表示与状态转移方程:
    在这里插入图片描述

  • 随后内容初始化以及其余细节问题:

在这里插入图片描述

代码

class Solution {
public:const int INF = 0x3f3f3f3f; // INT_MAX的1/2int maxProfit(vector<int>& prices) {int n = prices.size();// 创建dp数组vector<vector<int>> f(n, vector<int>(3, -INF));auto g = f; // i位置时,进行了j笔交易,最后状态为卖出的最大利润// 初始化元素f[0][0] = -prices[0], g[0][0] = 0;// 计算for(int i = 1; i < n; ++i){for(int j = 0; j < 3; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);// g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]):需要初始化g[i]的一行一列// 通过修改状态转移方程,只需要初始化一行g[i][j] = g[i-1][j];if(j - 1 >= 0) g[i][j] = max(g[i][j], f[i-1][j-1] + prices[i]);}}// 找最后一行最大值int ret = 0;for(int k = 0; k < 3; ++k)ret = max(ret, g[n - 1][k]);return ret;}
};

3.7_买卖股票的最佳时机IV

在这里插入图片描述

思路

  • 题意分析 相比于前一题,该题的改动就是将买卖次数定为k次,其余条件不变,求最大利润。
  • 故只需更改之前代码中的条件即可,将次数设为k次。
  • 不再画图,思路同前。

代码

class Solution {
public:const int INF = 0x3f3f3f3f;int maxProfit(int k, vector<int>& prices) {int n = prices.size();k = min(k, n/2); // 最多交易n/2次vector<vector<int>> f(n, vector<int>(k+1, -INF)); // 第i天交易了j次、且为买入状态的最大利润auto g = f; // 第i天交易了j次、且为“卖出”状态的最大利润f[0][0] = -prices[0], g[0][0] = 0; // 初始化for(int i = 1; i < n; ++i)for(int j = 0; j <= k; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = g[i-1][j];if(j-1 >= 0) g[i][j] = max(g[i][j], f[i-1][j-1] + prices[i]); // f[i-1][j-1] j-1: 记录一次交易次数}int ret = 0;for(int j = 0; j <= k; ++j)ret = max(ret, g[n-1][j]);return ret;}
};

这篇关于【动态规划】C++简单多状态dp问题(打家劫舍、粉刷房子、买卖股票的最佳时机...)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920702

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder