标题党太吓人?这篇文章会告诉你DeepMind关系推理网络的真实面貌

本文主要是介绍标题党太吓人?这篇文章会告诉你DeepMind关系推理网络的真实面貌,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepMind开发了一种神经网络,能够感知其周围的物体。

实际上这种报导不仅仅是误导性的,而且使得很多不明真相的吃瓜群众感到恐慌:AI真的已经强到如此地步了吗?在这篇文章中,将介绍DeepMind论文:A simple neural network module for relational reasoning,试着通过最简单的方式介绍这个最新的架构。

什么是关系推理(Relational Reasoning)?

从最简单的角度来说,关系推理就是学着去理解不同物体之间的关系(思想)。这种能力被认为是智能的一个基本特征。作者使用了一个图来解释什么是关系推理:

标题党太吓人?这篇文章会告诉你DeepMind关系推理网络的真实面貌

图1,模型需要关注一个不同形状、大小、颜色的物体,并能够回答关于多个物体之间关系的问题

推理网络

作者提出了一种神经网络,其本质是为了捕捉关系(就像卷积神经网络是为了捕捉图像的特征)。他们提出了一个如下定义的架构:

标题党太吓人?这篇文章会告诉你DeepMind关系推理网络的真实面貌

 

等式1:推理网络的定义

解释:

对O的关系网络是函数fΦ,其中O是想要学习关系的一组物体。

gθ是关于两个物体:oi, oj的方程。输出为我们所关心的“关系”。

Σ表示计算所有可能的物体对,计算他们的关系并加和。

神经网络与函数

在学习神经网络,反向传播等的时候,我们很容易忘记这点,但实际上,神经网络就是一个数学函数!因此,上面等式1描述的就是一个神经网络,更准确的说是两个神经网络:

1.       gθ,计算了一对物体之间的关系

2.       fΦ,计算了所有g的加和,并计算了整个模型的最终输出

gθ和fΦ在最简单的情况下都是多层感知机。

关系神经网络的灵活性

作者提出了关系神经网络作为组件。他们可以接受编码过的物体作为输入,并从中学习关系,更重要的是,他们可以很容易的插入到卷积神经网络,以及长短期记忆网络(LSTM)中。

卷积网络可以通过图像学习到物体。这对于实际应用有很大帮助,因为从图像中推理远比用户手工定义物体数组更实用。

LSTM和单词嵌入何以用来理解问题的含义。这同样更有实际意义,目前模型已经可以接受英文句子作为输入,而不是编码的数组。

作者提出了一种方法将关系网络、卷积网络、LSTM网络结合到一起,构建了一种端到端的神经网络,以学习物体之间的关系。

标题党太吓人?这篇文章会告诉你DeepMind关系推理网络的真实面貌

图2:端到端关系推理神经网络

图2的解释

图像会通过一个标准卷积神经网络(CNN),在这个过程中卷积神经网络会通过k个滤波器提取图像特征。推理网络中的“物体”即是图中网格每点的特征向量。例如,途中黄色的向量就代表一个“物体”。

问题会通过一个LSTM网络,这会产生该问题的特征性向量。可以粗略地表示这个问题的“含义”。

对于等式1,这里有一个轻微的修正,加入了一个额外的项:

标题党太吓人?这篇文章会告诉你DeepMind关系推理网络的真实面貌

额外的一项q,表示LSTM的最终状态。

在这之后,从CNN网络中得到的“物体“以及从LSTM网络中得到的向量被用来训练关系网络。每个物体对,以及从LSTM中得到的问题向量都被用作gθ(一个神经网络)的输入。

将gθ的输出求和,作为fΦ(另一个神经网络)的输入。然后优化fΦ以回答问题。

Benchmarks

作者在几个数据集上展示了该模型的有效性。这里只介绍一个最重要的数据集中的结果—CLEVR数据集。

CLEVR数据集包括不同形状、大小和颜色的物体的图像。模型会被问到如下图的问题:

这个立方体的材质与这个圆柱体的材质一样吗?

标题党太吓人?这篇文章会告诉你DeepMind关系推理网络的真实面貌

图3:物体的类型(上),位置组合(中&下)

作者表示,在准确度方面,其他系统都远远落后于他们的模型。这是由于关系网络就是为捕捉关系而设计的。他们的模型达到了前所未有的96%+的准确度,相比之下,使用stacked attention模型的准确度只有75%。

标题党太吓人?这篇文章会告诉你DeepMind关系推理网络的真实面貌

图3.1 CLEVR数据集上不同方法的比较

结论

关系网络机器适合于学习关系。该方法可以高效地使用数据。同时该方法也足够灵活,可以与CNN,LSTM一起作为一个混合解决方案。

本文也想通过正确的解读,来打破许多大型媒体关于“AI将会接管一切”的宣传,让大家正确的了解目前最好的方法能够做到什么程度。

本文由雷锋网编译,欲进一步了解,请阅读原文。

原文地址:https://hackernoon.com/deepmind-relational-networks-demystified-b593e408b643

论文地址:https://arxiv.org/pdf/1706.01427.pdf,雷锋网编译

这篇关于标题党太吓人?这篇文章会告诉你DeepMind关系推理网络的真实面貌的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920114

相关文章

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与