用于图像恢复的即插即用 ADMM:定点收敛和应用(Matlab代码实现)

本文主要是介绍用于图像恢复的即插即用 ADMM:定点收敛和应用(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 算例1

2.2 算例2

🎉3 参考文献

🌈4 Matlab代码、数据、文献


💥1 概述

乘法交替方向法(ADMM)是一种广泛使用的算法 用于解决图像恢复中的约束优化问题。在众多中 有用的功能,ADMM算法的一个关键特征是其模块化 允许插入任何现成图像去噪的结构 ADMM 算法中子问题的算法。因为插件 从本质上讲,这种类型的ADMM算法被命名为“即插即用ADMM”。 即插即用ADMM在许多 最近的论文。但是,目前尚不清楚在什么条件下以及通过使用什么 降噪算法将保证收敛。此外,由于即插即用 ADMM使用特定的方式来拆分变量,目前尚不清楚是否快速 可以实现常见的高斯和泊松图像恢复 问题。
在本文中,我们提出了一种具有可证明固定的即插即用ADMM算法 点收敛。我们表明,对于任何满足 渐近标准,称为有界降噪器,即插即用 ADMM 收敛到 延续方案下的固定点。我们还提供快速实施 针对超分辨率和单光子的两个图像复原问题 成像。我们将即插即用ADMM与每种算法中最先进的算法进行比较 问题类型,并展示了该算法的有希望的实验结果。

📚2 运行结果

2.1 算例1

2.2 算例2

部分代码:

clear all
close all
clc

addpath(genpath('./utilities/'));

%add path to denoisers
addpath(genpath('./denoisers/BM3D/'));
addpath(genpath('./denoisers/TV/'));
addpath(genpath('./denoisers/NLM/'));
addpath(genpath('./denoisers/RF/'));

%read test image
z = im2double(imread('./data/House256.png'));

%construct A matrix, deblurring as an example
dim = size(z);
h = fspecial('gaussian',[9 9],1);
A = @(z,trans_flag) afun(z,trans_flag,h,dim);

%reset random number generator
rng(0);

%set noies level
noise_level = 10/255;

%calculate observed image
y = A(z(:),'transp') + noise_level*randn(prod(dim),1);
y = proj(y,[0,1]);
y = reshape(y,dim);

%parameters
method = 'RF';
switch method
    case 'RF'
        lambda = 0.0005;
    case 'NLM'
        lambda = 0.005;
    case 'BM3D'
        lambda = 0.001;
    case 'TV'
        lambda = 0.01;
end

%optional parameters
opts.rho     = 1;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文献

这篇关于用于图像恢复的即插即用 ADMM:定点收敛和应用(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/92

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do