矩阵混乱度(熵值)代码计算

2024-04-20 07:52
文章标签 代码 计算 矩阵 混乱

本文主要是介绍矩阵混乱度(熵值)代码计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、先回顾下熵值的数据公式:

在这里插入图片描述

2、jax.numpy代码

注意的点:熵值计算的输入的必须是归一化的正值
import jax.numpy as jnp
import jax

def _entroy(probs):log_probs = jnp.log2(jnp.maximum(1.0e-30, probs))mean_sum_plogp = jnp.mean(- jnp.sum(log_probs * probs, axis=-1))return mean_sum_plogp

随机

key = jax.random.PRNGKey(123)
inputs = jax.random.normal(key, shape=(3, 4))
print(f'inputs:\n{inputs}')
probs1 = jax.nn.softmax(inputs)
print(f'probs1:\n{probs1}')
entroy_value1 = _entroy(probs1)
print(f'entroy_value1: {entroy_value1}\n\n')输出:
inputs:
[[-0.31682462 -1.5700184   0.6431673  -0.11953171][ 0.21440512 -0.886306   -0.0515956  -0.81674606][-1.241783   -0.63905096 -0.65371424  0.88143796]]
probs1:
[[0.19548938 0.05583005 0.5105548  0.23812577][0.40722093 0.13545571 0.31210986 0.14521345][0.07700823 0.140702   0.1386539  0.64363587]]
entroy_value1: 1.6717370748519897

极端均匀

极端均匀,熵值最大。最大值为log2(dim),例子的shape为3 * 4,我们计算的为最后一维的熵值情况,因此dim为4,所以log2(4) = 2。

probs2 = jnp.array([[0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25]])
print(f'probs2:\n{probs2}')
entroy_value2 = _entroy(probs2)
print(f'entroy_value2: {entroy_value2}\n\n')
输出:
probs2:
[[0.25 0.25 0.25 0.25][0.25 0.25 0.25 0.25][0.25 0.25 0.25 0.25]]
entroy_value2: 2.0

增加混乱程度

增加混乱度,熵值减小

# 修改了矩阵的概率值
probs3 = jnp.array([[0.5, 0, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25]])
print(f'probs3:\n{probs3}')
entroy_value3 = _entroy(probs3)
print(f'entroy_value3: {entroy_value3}\n\n')
输出:
probs3:
[[0.5  0.   0.25 0.25][0.25 0.25 0.25 0.25][0.25 0.25 0.25 0.25]]
entroy_value3: 1.8333333730697632

极端混乱

极端混乱度,熵值最小,最小值跟矩阵的维度无关,基本都为0

probs4 = jnp.array([[0, 0, 1, 0],[0, 0, 1, 0], [0, 0, 1, 0]])
print(f'probs4:\n{probs4}')
entroy_value4 = _entroy(probs4)
print(f'entroy_value4: {entroy_value4}\n\n')
输出:
probs4:
[[0 0 1 0][0 0 1 0][0 0 1 0]]
entroy_value4: 0.0

3、numpy代码:

import numpy as np
剩下代码把随机输jnp换成np即可。然后就是生成随机输入和Softmax也有点不一样。

4、torch代码

import torchdef _entroy(probs):log_probs = torch.log2(torch.maximum(torch.tensor(1.0e-30), probs))mean_sum_plogp = torch.mean(- torch.sum(log_probs * probs, dim=-1))return mean_sum_plogptorch.manual_seed(123)

随机

inputs = torch.rand(3, 4)
print(f'inputs:\n{inputs}')
probs1 = torch.nn.functional.softmax(inputs)
print(f'probs1:\n{probs1}')
entroy_value1 = _entroy(probs1)
print(f'entroy_value1: {entroy_value1}\n\n')
输出:
inputs:
tensor([[0.2961, 0.5166, 0.2517, 0.6886],[0.0740, 0.8665, 0.1366, 0.1025],[0.1841, 0.7264, 0.3153, 0.6871]])
probs1:
tensor([[0.2135, 0.2662, 0.2042, 0.3161],[0.1886, 0.4166, 0.2008, 0.1940],[0.1814, 0.3120, 0.2068, 0.2999]])
entroy_value1: 1.947859764099121

极端均匀

probs2 = torch.tensor([[0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25]])
print(f'probs2:\n{probs2}')
entroy_value2 = _entroy(probs2)
print(f'entroy_value2: {entroy_value2}\n\n')
输出:
probs2:
tensor([[0.2500, 0.2500, 0.2500, 0.2500],[0.2500, 0.2500, 0.2500, 0.2500],[0.2500, 0.2500, 0.2500, 0.2500]])
entroy_value2: 2.0

改变矩阵的混乱程度

probs3 = torch.tensor([[0.5, 0, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25]])
print(f'probs3:\n{probs3}')
entroy_value3 = _entroy(probs3)
print(f'entroy_value3: {entroy_value3}\n\n')
输出:
probs3:
tensor([[0.5000, 0.0000, 0.2500, 0.2500],[0.2500, 0.2500, 0.2500, 0.2500],[0.2500, 0.2500, 0.2500, 0.2500]])
entroy_value3: 1.8333333730697632

极端混乱

probs4 = torch.tensor([[0, 0, 1, 0],[0, 0, 1, 0], [0, 0, 1, 0]])
print(f'probs4:\n{probs4}')
entroy_value4 = _entroy(probs4)
print(f'entroy_value4: {entroy_value4}\n\n')
输出:
tensor([[0, 0, 1, 0],[0, 0, 1, 0],[0, 0, 1, 0]])
entroy_value4: 0.0

这篇关于矩阵混乱度(熵值)代码计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/919696

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac