Android P 显示流程分析(三)---EventThread MessageQueue 交互分析

2024-04-20 06:32

本文主要是介绍Android P 显示流程分析(三)---EventThread MessageQueue 交互分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上篇分析SurfaceFlinger的init()里创建了几个线程,主要用于界面刷新。里面涉及了一个EventThread和MessageQueue。我们来看看像界面刷新这种高频的事件通知及处理,Google是如何设计的。

EventThread的初始化

EventThread::EventThread(VSyncSource* src, ResyncWithRateLimitCallback resyncWithRateLimitCallback,InterceptVSyncsCallback interceptVSyncsCallback, const char* threadName){//创建一个线程,实际做事的也是这个线程处理的mThread = std::thread(&EventThread::threadMain, this);...                    
}                         

创建connection

其它一些线程需要将事件推给EventThread去处理,需要中间有一个连接者与EventThread交互,EventThread里面就创建出来了一个内部类Connection,负责连接交互的工作

sp<BnDisplayEventConnection> EventThread::createEventConnection() const {return new Connection(const_cast<EventThread*>(this));
}
class Connection : public BnDisplayEventConnection {
public:virtual status_t postEvent(const DisplayEventReceiver::Event& event);
private:void requestNextVsync() override; 
}

上篇SurfaceFlinger.init()中实例化一个EventThread之后,就调用了mEventQueue->setEventThread(mSFEventThread.get()),

void MessageQueue::setEventThread(android::EventThread* eventThread) {
...mEventThread = eventThread;mEvents = eventThread->createEventConnection();
...
}
sp<BnDisplayEventConnection> EventThread::createEventConnection() const {return new Connection(const_cast<EventThread*>(this));
}    

MessageQueue中的mEvents就是一个connection对象。就是它就将MessageQueue与EventThread连接起来了。
我们再来看看EventHandler 的那个线程启动之后,做了哪些事情:

void EventThread::threadMain() NO_THREAD_SAFETY_ANALYSIS {std::unique_lock<std::mutex> lock(mMutex);while (mKeepRunning) {DisplayEventReceiver::Event event;Vector<sp<EventThread::Connection> > signalConnections;signalConnections = waitForEventLocked(&lock, &event);// dispatch events to listeners...const size_t count = signalConnections.size();for (size_t i = 0; i < count; i++) { const sp<Connection>& conn(signalConnections[i]);// now see if we still need to report this eventstatus_t err = conn->postEvent(event);if (err == -EAGAIN || err == -EWOULDBLOCK) {ALOGW("EventThread: dropping event (%08x) for connection %p", event.header.type,conn.get());} else if (err < 0) {removeDisplayEventConnectionLocked(signalConnections[i]);}}}
}

总体来说是获取事件,将获取到的事件放到BitTube中去,具体的获取事件的waitForEventLocked是如何做的呢?

Vector<sp<EventThread::Connection> > EventThread::waitForEventLocked(std::unique_lock<std::mutex>* lock, DisplayEventReceiver::Event* event) {Vector<sp<EventThread::Connection> > signalConnections;while (signalConnections.isEmpty() && mKeepRunning) {for (int32_t i = 0; i < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES; i++) {timestamp = mVSyncEvent[i].header.timestamp;if (timestamp) {// we have a vsync event to dispatchif (mInterceptVSyncsCallback) {mInterceptVSyncsCallback(timestamp);}*event = mVSyncEvent[i];mVSyncEvent[i].header.timestamp = 0;vsyncCount = mVSyncEvent[i].vsync.count;break;}} if (!timestamp) {// no vsync event, see if there are some other eventeventPending = !mPendingEvents.isEmpty();if (eventPending) {// we have some other event to dispatch*event = mPendingEvents[0];mPendingEvents.removeAt(0);}}        // find out connections waiting for eventssize_t count = mDisplayEventConnections.size();for (size_t i = 0; i < count;) {sp<Connection> connection(mDisplayEventConnections[i].promote()); if (connection != nullptr) {bool added = false;if (connection->count >= 0) {// we need vsync events because at least// one connection is waiting for itwaitForVSync = true;if (timestamp) {// we consume the event only if it's time// (ie: we received a vsync event)if (connection->count == 0) {// fired this time aroundconnection->count = -1;signalConnections.add(connection);added = true;} else if (connection->count == 1 ||(vsyncCount % connection->count) == 0) {// continuous event, and time to report itsignalConnections.add(connection);added = true;}}}if (eventPending && !timestamp && !added) {// we don't have a vsync event to process// (timestamp==0), but we have some pending// messages.signalConnections.add(connection);}++i; } else {// we couldn't promote this reference, the connection has// died, so clean-up!mDisplayEventConnections.removeAt(i);--count;}}   ...// note: !timestamp implies signalConnections.isEmpty(), because we// don't populate signalConnections if there's no vsync pendingif (!timestamp && !eventPending) {// wait for something to happenif (waitForVSync) {// This is where we spend most of our time, waiting// for vsync events and new client registrations.//// If the screen is off, we can't use h/w vsync, so we// use a 16ms timeout instead.  It doesn't need to be// precise, we just need to keep feeding our clients.//// We don't want to stall if there's a driver bug, so we// use a (long) timeout when waiting for h/w vsync, and// generate fake events when necessary.bool softwareSync = mUseSoftwareVSync;auto timeout = softwareSync ? 16ms : 1000ms;if (mCondition.wait_for(*lock, timeout) == std::cv_status::timeout) {if (!softwareSync) {ALOGW("Timed out waiting for hw vsync; faking it");}// FIXME: how do we decide which display id the fake// vsync came from ?mVSyncEvent[0].header.type = DisplayEventReceiver::DISPLAY_EVENT_VSYNC;mVSyncEvent[0].header.id = DisplayDevice::DISPLAY_PRIMARY;mVSyncEvent[0].header.timestamp = systemTime(SYSTEM_TIME_MONOTONIC);mVSyncEvent[0].vsync.count++;}} else {// Nobody is interested in vsync, so we just want to sleep.// h/w vsync should be disabled, so this will wait until we// get a new connection, or an existing connection becomes// interested in receiving vsync again.mCondition.wait(*lock);}}}// here we're guaranteed to have a timestamp and some connections to signal// (The connections might have dropped out of mDisplayEventConnections// while we were asleep, but we'll still have strong references to them.)return signalConnections;
}                     

waitForEventLocked 就如果vsyncEvent和pendingEvent里已经存在事件,就将其取出指定给event,然后遍历出所有的mDisplayEventConnections, 找且需要的connection, 将他们一一添加到signalConnections中, 如果没有找到需要connection, 就设置mCondition.wait(*lock), 条件加锁等待,直到此条件被唤醒。
我们上面EventThread的threadMain分析到将获取的signalConnections中的connection遍历出来,然后将通过调用 connection的postEvent 将event事件加入到BitTube中。

MessageQueue的作用

surfaceFlinger很多事件都是通过MessageQueue来处理的,SurfaceFlinger里的mEventQueue就是MessageQueue的对象指针。

void SurfaceFlinger::waitForEvent() {mEventQueue->waitMessage();
}
void SurfaceFlinger::signalTransaction() {mEventQueue->invalidate();
}
void SurfaceFlinger::signalLayerUpdate() {mEventQueue->invalidate();
}
void SurfaceFlinger::signalRefresh() {mRefreshPending = true;mEventQueue->refresh();
}
void SurfaceFlinger::run() {do {waitForEvent();} while (true);
}

以上这些都是通过MessageQueue去调用实现的。那我们再具体看看MessageQueue里是如何实现的。

void MessageQueue::invalidate() {mEvents->requestNextVsync();
}
void EventThread::Connection::requestNextVsync() {mEventThread->requestNextVsync(this);
}
void EventThread::requestNextVsync(const sp<EventThread::Connection>& connection) {std::lock_guard<std::mutex> lock(mMutex);if (connection->count < 0) {connection->count = 0;mCondition.notify_all();}
}

invalidate 主要是为了唤醒waitForEventLocked , 让EventThread继续执行。

void MessageQueue::refresh() {mHandler->dispatchRefresh();
}
void MessageQueue::Handler::dispatchRefresh() {if ((android_atomic_or(eventMaskRefresh, &mEventMask) & eventMaskRefresh) == 0) {mQueue.mLooper->sendMessage(this, Message(MessageQueue::REFRESH));}
}
void MessageQueue::Handler::handleMessage(const Message& message) {switch (message.what) {...case REFRESH:android_atomic_and(~eventMaskRefresh, &mEventMask);mQueue.mFlinger->onMessageReceived(message.what);break;}
}
void SurfaceFlinger::onMessageReceived(int32_t what) {... case MessageQueue::REFRESH: {handleMessageRefresh();break;}
}
void SurfaceFlinger::handleMessageRefresh() {ATRACE_CALL();mRefreshPending = false;nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);preComposition(refreshStartTime);rebuildLayerStacks();setUpHWComposer();doDebugFlashRegions();doTracing("handleRefresh");logLayerStats();doComposition();postComposition(refreshStartTime);mPreviousPresentFence = getBE().mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);mHadClientComposition = false;for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {const sp<DisplayDevice>& displayDevice = mDisplays[displayId];mHadClientComposition = mHadClientComposition ||getBE().mHwc->hasClientComposition(displayDevice->getHwcDisplayId());}mVsyncModulator.onRefreshed(mHadClientComposition);mLayersWithQueuedFrames.clear();
}    	   

最后调用到了SurfaceFlinger的handleMessageRefresh(), 里面涉及到图层的合成了。
到这里EventThread和MessageQueue就分析完了。

这篇关于Android P 显示流程分析(三)---EventThread MessageQueue 交互分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/919518

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方