caffe 参数solver_param分析

2024-04-20 01:32
文章标签 分析 参数 caffe param solver

本文主要是介绍caffe 参数solver_param分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是ssd_pascal.py中的一段代码,因为在读ssd的代码,所以贴的这一段,一般别的solver param也差不多......


solver_param = {

    # Train parameters

//base_lr:网络的基础学习速率,一般设一个很小的值,然后根据迭代到不同次数,对学习速率做相应的变化.lr过大不会收敛,过小收敛过慢

    'base_lr': base_lr,

//weight_decay:权衰量,用于防止过拟合

    'weight_decay': 0.0005,

//lr_policy:学习速率的衰减策略,详细见后面

    'lr_policy': "step",

//stepsize:每40000次迭代减少学习率(这一项和lr_policy有关)

    'stepsize': 40000,

//学习率变化的比率(这一项和lr_policy有关)

    'gamma': 0.1,

//momentum:网络的冲量;学习的参数,不用变;上一次梯度更新的权重(找到的三个不一样的说法...)

    'momentum': 0.9,

//iter_size:iter_size*batch size=实际使用的batch size。 相当于读取batchsize*itersize个图像才做一下gradient decent。 这个参数可以规避由于gpu不足而导致的batchsize的限制 因为你可以用多个iteration做到很大的batch 即使单次batch有限

    'iter_size': iter_size,

//max_iter:最大迭代次数,告诉网络何时停止训练.太小达不到收敛,太大会导致震荡

    'max_iter': 60000,

//snapshot:每40000次迭代打印一次快照(就是把当前数据保存下来,方便下次重用,如果电源不稳定容易意外关机建议这个值设小一点...对,就是我...)

    'snapshot': 40000,

//display:每经过10次迭代,在屏幕上打印一次运行log(告诉你当前的loss之类的...)

    'display': 10,

//取多次foward的loss作平均,进行显示输出

    'average_loss': 10,

//type:选择一种优化算法,具体有哪些见后面

    'type': "SGD",

//选择CPU or GPU

    'solver_mode': solver_mode,

//device_id:选择几块GPU

    'device_id': device_id,

//用于调试的?暂时不确定...以后补上

    'debug_info': False,

//snapshot_after_train:true表示在训练完后把最后一次的训练结果保存下来

    'snapshot_after_train': True,

    # Test parameters

//test_iter:每次预测的迭代次数.一般test_iter*batch_size=所有test样本数,这样一次预测就可以覆盖所有test样本

    'test_iter': [test_iter],

//test_interval:训练时每迭代10000次进行一次预测

    'test_interval': 10000,

//

    'eval_type': "detection",

//

    'ap_version': "11point",

//test_initialization:false表示可以用上次保存的snapshot来继续训练

    'test_initialization': False,

    }




lr_policy

这个参数代表的是learning rate应该遵守什么样的变化规则,这个参数对应的是字符串,选项及说明如下:

  • “step” - 需要设置一个stepsize参数,返回base_lr * gamma ^ ( floor ( iter / stepsize ) ),iter为当前迭代次数
  • “multistep” - 和step相近,但是需要stepvalue参数,step是均匀等间隔变化,而multistep是根据stepvalue的值进行变化
  • “fixed” - 保持base_lr不变
  • “exp” - 返回base_lr * gamma ^ iter, iter为当前迭代次数
  • “poly” - 学习率进行多项式误差衰减,返回 base_lr ( 1 - iter / max_iter ) ^ ( power )
  • “sigmoid” - 学习率进行sigmod函数衰减,返回 base_lr ( 1/ 1+exp ( -gamma * ( iter - stepsize ) ) )

type

到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

  • Stochastic Gradient Descent (type: "SGD"),
  • AdaDelta (type: "AdaDelta"),
  • Adaptive Gradient (type: "AdaGrad"),
  • Adam (type: "Adam"),
  • Nesterov’s Accelerated Gradient (type: "Nesterov") and
  • RMSprop (type: "RMSProp")

这篇关于caffe 参数solver_param分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918963

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty