数据结构:哈密顿回路基础

2024-04-20 01:12

本文主要是介绍数据结构:哈密顿回路基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是哈密顿回路?

哈密顿回路(Hamiltonian Cycle)是图论中的一个概念,指的是在一个图中通过图的每个顶点恰好一次且仅一次,并最终回到起始顶点的闭合回路。在一个哈密顿回路中,除了起始和结束的顶点必须是同一个顶点,并且这个顶点恰好出现两次之外,其他每个顶点都恰好出现一次。哈密顿回路的命名来自于爱尔兰数学家威廉·罗伊兰·哈密顿。

判断是否存在哈密顿环问题是一个经典的NP完全问题,这意味着目前没有已知的多项式时间算法能解决所有情况。对于一个含有 V V V个顶点和 E E E条边的图来说,常见的算法时间复杂度如下:

  1. 暴力搜索法:尝试图中所有可能的顺序来查找哈密顿环。其时间复杂度为 O ( V ! ) O(V!) O(V!),因为需要检查每个顶点的所有排列。

  2. 回溯法:在搜索过程中,如果路径不满足条件,则回退一步。这是一种改进的暴力法,但最坏情况的时间复杂度仍然为 O ( V ! ) O(V!) O(V!)

  3. 动态规划(例如 Held-Karp 算法):用于求解旅行商问题(TSP),该问题与哈密顿环问题紧密相关。Held-Karp算法使用动态规划,其时间复杂度为 O ( V 2 2 V ) O(V^2 2^V) O(V22V)

  4. 启发式算法:如遗传算法、蒙特卡洛方法等,并不保证总是能找到解决方案,但在一些情况下它们可以在多项式时间内给出近似解。时间复杂度因算法和实现而异,但通常比 O ( V 2 2 V ) O(V^2 2^V) O(V22V)要低。

判断给路径是否是哈密顿回路

只需要满足条件:每个点经过一次,并且是一个环路就行。像判断是否是给定图的拓扑排序一样,按照流程走一遍就行。
优化代码:

  • 尽量不适用全局变量,使用引用传参。
  • 将条件合并。
#include <iostream>
#include <vector>
#include <unordered_set>using namespace std;bool isHamiltonianCycle(const vector<unordered_set<int>>& graph, const vector<int>& path) {if(path.front() != path.back() || path.size() != graph.size()) {return false;}unordered_set<int> visited;int len=path.size();for(int i = 0; i < len - 1; ++i) {if(graph[path[i]].count(path[i+1]) == 0 || visited.count(path[i]) != 0) {return false;}visited.insert(path[i]);}if(graph[path[len-2]].count(path.back()) != 0)return true;else return false;
}int main() {ios_base::sync_with_stdio(false);cin.tie(nullptr);int N, M;cin >> N;vector<unordered_set<int>> graph(N + 1);cin >> M;while(M--) {int u, v;cin >> u >> v;graph[u].insert(v);graph[v].insert(u);}int K;cin >> K;while(K--) {int n, v;cin >> n;vector<int> path;path.reserve(n);//无所谓,这改变的是capacity,与resize不一样。while(n--) {cin >> v;path.emplace_back(v);}if(isHamiltonianCycle(graph, path)) {cout << "YES\n";} else {cout << "NO\n";}}return 0;
}
动态规划:最短哈密顿路径

最短哈密顿路径
该问题将在以后解释。

这篇关于数据结构:哈密顿回路基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918931

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键