使用Python免费自制线稿生成工具

2024-04-19 20:44

本文主要是介绍使用Python免费自制线稿生成工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片转线稿代码

这是一个Python脚本,它使用PIL库(Python Imaging Library,也被称为Pillow)和NumPy库将图片转换为线稿效果。以下是代码的具体内容:

# 文件名:ImgProcess.pyfrom PIL import Image
import numpy as npdef imgprocess(filename, out_puts="img_processed.jpg"):"""将输入的图片转换为线稿效果,并保存为新的图片文件。参数:filename (str): 输入图片的文件路径。out_puts (str): 输出图片的文件路径,默认为 "img_processed.jpg"。返回:None"""# 虚拟亮度,用于调整线稿的深浅depth = 10# 打开图片,并将其转换为灰度图a = np.array(Image.open(filename).convert('L'))# 计算图片的梯度,得到每个像素点在x和y方向上的变化率grad_x, grad_y = np.gradient(a)# 根据虚拟亮度调整梯度的大小grad_x = grad_x * depth / 100grad_y = grad_y * depth / 100# 光源效果,设定光源的方向vec_el = np.pi / 2vec_az = np.pi / 4.# 计算光源在x、y和z方向上的分量dx = np.cos(vec_el) * np.cos(vec_az)dy = np.cos(vec_el) * np.sin(vec_az)dz = np.sin(vec_el)# 计算每个像素点的单位向量A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.)uni_x = grad_x / Auni_y = grad_y / Auni_z = 1. / A# 根据光源的方向和每个像素点的单位向量,计算每个像素点的亮度b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z)# 将亮度值限制在0到255之间b = b.clip(0, 255)# 将处理后的图片数据转换为PIL图片对象,并保存为新的文件img = Image.fromarray(b.astype('uint8'))img.save(out_puts)# 线稿示例
# 调用imgprocess函数,将'./static/bc.jpg'图片转换为线稿,并保存为'img_processed.jpg'
imgprocess(filename='./static/bc.jpg')

使用这段代码,你可以将任何输入的图片转换为线稿效果,并保存为新的图片文件。

以下是将其转换为可执行脚本:
为了将上述脚本转换为一个可以接受--image_path命令行参数的可执行文件,需要进行几个步骤:

  1. 使用argparse模块来解析命令行参数。
  2. imgprocess函数内部的硬编码文件路径替换为从命令行参数中获取的路径。
  3. 编写一个主函数main来调用imgprocess函数,并处理命令行参数。
  4. 在脚本的末尾添加if __name__ == "__main__":块来调用main函数。

下面是修改后的脚本:

# 文件名:img_to_lineart.pyfrom PIL import Image
import numpy as np
import argparsedef imgprocess(image_path, out_puts="img_processed.jpg"):"""将输入的图片转换为线稿效果,并保存为新的图片文件。参数:image_path (str): 输入图片的文件路径。out_puts (str): 输出图片的文件路径,默认为 "img_processed.jpg"。返回:None"""# 虚拟亮度,用于调整线稿的深浅depth = 10# 打开图片,并将其转换为灰度图a = np.array(Image.open(image_path).convert('L'))# 计算图片的梯度grad_x, grad_y = np.gradient(a)# 根据虚拟亮度调整梯度的大小grad_x = grad_x * depth / 100grad_y = grad_y * depth / 100# 光源效果,设定光源的方向vec_el = np.pi / 2vec_az = np.pi / 4.# 计算光源在x、y和z方向上的分量dx = np.cos(vec_el) * np.cos(vec_az)dy = np.cos(vec_el) * np.sin(vec_az)dz = np.sin(vec_el)# 计算每个像素点的单位向量A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.)uni_x = grad_x / Auni_y = grad_y / Auni_z = 1. / A# 根据光源的方向和每个像素点的单位向量,计算每个像素点的亮度b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z)# 将亮度值限制在0到255之间b = b.clip(0, 255)# 将处理后的图片数据转换为PIL图片对象,并保存为新的文件img = Image.fromarray(b.astype('uint8'))img.save(out_puts)def main():parser = argparse.ArgumentParser(description='Convert an image to lineart.')parser.add_argument('--image_path', type=str, required=True, help='Path to the input image file.')parser.add_argument('--output_path', type=str, default="img_processed.jpg", help='Path to save the processed image file.')args = parser.parse_args()imgprocess(args.image_path, args.output_path)if __name__ == "__main__":main()

接下来,为了将这个Python脚本转换为可执行文件,你需要做以下事情:

  1. 确保你的Python环境已经安装了所有必需的包(Pillow 和 argparse)。
  2. 将上述脚本保存为 img_to_lineart.py
  3. 在命令行中,使用以下命令将脚本转换为可执行文件(假设你已经安装了 pyinstaller):
pyinstaller --onefile img_to_lineart.py

这将会创建一个单独的可执行文件(在Windows上是.exe,在Linux或macOS上是没有扩展名的文件)。

  1. 运行可执行文件,并传入--image_path参数:
./img_to_lineart --image_path /path/to/your/image.jpg

或者,在Windows上:

img_to_lineart.exe --image_path C:\path\to\your\image.jpg

这样,你就可以通过命令行参数来指定输入图片的路径,并运行脚本将其转换为线稿效果了。

这篇关于使用Python免费自制线稿生成工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918446

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有