理解CNN参数及PyTorch实例,卷积核kernel,层数Channels,步长Stride,填充Padding,池化Pooling,PyTorch中的相关方法,MNIST例子

本文主要是介绍理解CNN参数及PyTorch实例,卷积核kernel,层数Channels,步长Stride,填充Padding,池化Pooling,PyTorch中的相关方法,MNIST例子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.34.理解CNN参数及PyTorch实例
1.34.1.卷积核kernel
1.34.2.层数Channels
1.34.3.步长Stride
1.34.4.填充Padding
1.34.5.池化Pooling
1.34.6.PyTorch中的相关方法
1.34.7.MNIST例子

1.34.理解CNN参数及PyTorch实例

参考地址:http://guileen.github.io/2019/12/24/understanding-cnn/

在实际的项目中,会发现CNN有多个参数需要调整,本文主要目的在于理清各个参数的作用。

1.34.1.卷积核kernel

Kernel,卷积核,有时也称为filter。在迭代过程中,学习的结果就保存在kernel里面。深度学习,学习的就是一个权重。kernel的尺寸越小,计算量越小,一般选择3x3,更小就没有意义了。
在这里插入图片描述
结果是对卷积核与一小块输入数据的点积。

1.34.2.层数Channels

在这里插入图片描述
所有位置的点积构成一个激活层。
在这里插入图片描述
如果我们有6个卷积核,我们就会有6个激活层。

1.34.3.步长Stride

在这里插入图片描述
上图是每次向右移动一格,一行结束向下移动一行,所以stride是1x1,如果是移动2格2行则是2x2。

1.34.4.填充Padding

Padding的作用是为了获取图片上下左右边缘的特征。
在这里插入图片描述

1.34.5.池化Pooling

卷积层为了提取特征,但是卷积层提取完特征后特征图层依然很大。为了减少计算量,我们可以用padding的方式来减小特征图层。Pooling的方法有MaxPooling核AveragePooling。
在这里插入图片描述

1.34.6.PyTorch中的相关方法

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode=’zeros’)
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
stride默认与kernel_size相等
torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)
Tensor.view(*shape) -> Tensor
用于将卷积层展开为全连接层

x = torch.randn(4, 4)
x.size()“””
输出结果:
torch.Size([4, 4])
“””y = x.view(16)
y.size()
“””
输出结果:
torch.Size([16])
“””z = x.view(-1, 8)   # the size -1 is inferred from other dimensions
z.size()
“””
输出结果:
torch.Size([2, 8])
“””

1.34.7.MNIST例子

MNIST 数据集的输入是 1x28x28 的数据集。在实际开发中必须要清楚每一次的输出结构。

我们第一层使用 5x5的卷积核,步长为1,padding为0,28-5+1 = 24,那么输出就是 24x24。计算方法是 (input_size - kernel_size)/ stride + 1。
我们第二层使用 2x2的MaxPool,那么输出为 12x12。
第三层再使用5x5,卷积核,输出则为 12-5+1,即 8x8。
再使用 2x2 MaxPool,输出则为 4x4。
在这里插入图片描述

# -*- coding: UTF-8 -*-import torch.nn as nn
import torch.nn.functional as Fclass Net(nn.Module):"""ConvNet -> Max_Pool -> RELU -> ConvNet -> Max_Pool -> RELU -> FC -> RELU -> FC -> SOFTMAX"""def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 10, 5, 1)self.conv2 = nn.Conv2d(10, 20, 5, 1)self.fc1 = nn.Linear(4*4*20, 50)self.fc2 = nn.Linear(50, 10)def forward(self, x):x = F.relu(self.conv1(x))x = F.max_pool2d(x, 2, 2)x = F.relu(self.conv2(x))x = F.max_pool2d(x, 2, 2)x = x.view(-1, 4*4*20)x = F.relu(self.fc1(x))x = self.fc2(x)return F.log_softmax(x, dim=1)

这篇关于理解CNN参数及PyTorch实例,卷积核kernel,层数Channels,步长Stride,填充Padding,池化Pooling,PyTorch中的相关方法,MNIST例子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918132

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端