17行代码实现kmeans

2024-04-19 14:32
文章标签 代码 实现 17 kmeans

本文主要是介绍17行代码实现kmeans,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

恩,当然是用库了。计算点与点之间距离,用scipy中的cdist,这点是半年前吧看的一篇代码学的。

kmeans原理就不介绍了,很简单的。代码如下:

def kmeans(k,data):length = len(data)#   width = len(data[0])zeros = np.array([0]*length)new_data = np.column_stack((data,zeros))# print(new_data)for itera_num in range(0,30,1):       if itera_num==0:#第一次循环,随机选择均值import random#随机选择K个不重复的随机数    random_nums = random.sample([i for i in range(0,length,1)],k)#用这k个随机数选择初始的均值向量 mean_vector_list=[data[random_nums[i]] for i in range(0,k,1)]else:#从已有的计算平均值,mean_vector_list.clear()for i in range(0,k,1):box = [new_data[j][:-1] for j in range(0,length) if new_data[j][-1]==i]#取得标记为i所有的行avg = np.average(np.array(box),axis=0)#矩阵按照列求平均值mean_vector_list.append(avg)#重新进行归类,此时应该:1,算出距离2,追个数据判断,加入盒子distances = cdist(new_data[:,:-1],np.array(mean_vector_list))minDinstanceIndex = np.argmin(distances,axis=1)#axis为1表示按行取最小的indexnew_data = np.column_stack((new_data[:,:-1],minDinstanceIndex))#更新最后一行的标记数据return new_data[:,-1]  #返回最后一列

下面是完整的代码,导入数据和可视化,最后结果输出。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from scipy.spatial.distance import cdist
from sklearn.cluster import KMeans
plt.figure(figsize=(12, 12))n_samples = 1500
random_state = 170
X, y = make_blobs(n_samples=n_samples, random_state=random_state)
#print(X[0])# Incorrect number of clusters
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X)'''kmeans就是要迭代进行计算,主要步骤是:
数据的形式:data:ndarray
X:[[0,0,1,y0],[0,0,2,y1],[0,1,2,y2]...]这是某个空盒子中的形式
1,循环开始前,先选定k个重心点
2循环,迭代的次数选择重心,当迭代为1,则随机选,否则追个遍历box中空盒子的元素的平均值//计算每个点与k个点的距离,哪个距离小则将这个点,将最后一位的标记修改计算新的重心输出:ndarray#循环结束,返回一个盒子集合:每个数据都放在一个盒子中#实际要求的是,对于X的每个数值,输入一个类别,上述的过程还要一部处理。考#考虑方案X后面直接加y是不是好些呢???直接加类型,算距离时候不能用用啊。#还是可以这么搞的,对矩阵进行分片嘛
'''def kmeans(k,data):length = len(data)#   width = len(data[0])zeros = np.array([0]*length)new_data = np.column_stack((data,zeros))# print(new_data)for itera_num in range(0,30,1):       if itera_num==0:#第一次循环,随机选择均值import random#随机选择K个不重复的随机数    random_nums = random.sample([i for i in range(0,length,1)],k)#用这k个随机数选择初始的均值向量 mean_vector_list=[data[random_nums[i]] for i in range(0,k,1)]else:#从已有的计算平均值,mean_vector_list.clear()for i in range(0,k,1):box = [new_data[j][:-1] for j in range(0,length) if new_data[j][-1]==i]#取得标记为i所有的行avg = np.average(np.array(box),axis=0)#矩阵按照列求平均值mean_vector_list.append(avg)#重新进行归类,此时应该:1,算出距离2,追个数据判断,加入盒子distances = cdist(new_data[:,:-1],np.array(mean_vector_list))minDinstanceIndex = np.argmin(distances,axis=1)#axis为1表示按行取最小的indexnew_data = np.column_stack((new_data[:,:-1],minDinstanceIndex))#更新最后一行的标记数据return new_data[:,-1]  #返回最后一列mypredict_y = kmeans(3,X)
transformation = [[0.2, -0.2], [-0.40887718, 0.2]]
X_aniso = np.dot(X, transformation)
mypredict_y2 =kmeans(3,X_aniso)# Different variance
X_varied, y_varied = make_blobs(n_samples=n_samples,cluster_std=[1.0, 2.5, 0.5],random_state=random_state)
mypredict_y3 = kmeans(3,X_varied)# Unevenly sized blobs
X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10]))
mypredict_y4 = kmeans(3,X_filtered)plt.subplot(221)
plt.scatter(X[:, 0], X[:, 1], c=mypredict_y)
plt.subplot(222)
plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=mypredict_y2)
plt.subplot(223)
plt.scatter(X_varied[:, 0], X_varied[:, 1], c=mypredict_y3)
plt.subplot(224)
plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=mypredict_y4)plt.show()

分类结果展示:


对第四类效果并不好,因为我的kmeans没有对中心点进行一些处理,导致不好。


这篇关于17行代码实现kmeans的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917808

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解