使用Azure AI Search和LlamaIndex构建高级RAG应用

2024-04-19 13:36

本文主要是介绍使用Azure AI Search和LlamaIndex构建高级RAG应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RAG 是一种将公司信息合并到基于大型语言模型 (LLM) 的应用程序中的常用方法。借助 RAG,AI 应用程序可以近乎实时地访问最新信息,团队可以保持对其数据的控制。

在 RAG 中,您可以评估和修改各个阶段以改进结果,它们分为三类:预检索、检索和检索后。

  1. 预检索可提高使用查询重写等技术检索的数据的质量。
  2. 检索使用混合搜索和语义排序等高级技术改进结果。
  3. 检索后侧重于优化检索信息和增强提示。

LlamaIndex 为初学者和有经验的开发人员提供了一个全面的框架和生态系统,以在其数据源上构建 LLM 应用程序。

Azure AI Search是一个信息检索平台,具有尖端的搜索技术和无缝的平台集成,专为任何规模的高性能生成式 AI 应用程序而构建。

我们在预检索中使用LlamaIndex 进行查询转换,并使用 Azure AI 搜索进行高级检索,可以生成构建更好的RAG应用程序。

预检索技术和优化查询编排

为了优化预检索,LlamaIndex 提供了查询转换,这是一项优化用户输入的强大功能。一些查询转换技术包括:

  • 路由:保持查询不变,但标识查询应用到的相关工具子集。将这些工具输出为相关选项。
  • 查询重写:保持工具不变,但以各种不同的方式重写查询,以针对相同的工具执行。
  • 子问题:将查询分解为不同工具上的多个子问题,由其元数据标识。
  • ReAct 代理工具选取:给定初始查询,确定 (1) 要选取的工具,以及 (2) 要在工具上执行的查询。

以查询重写为例:查询重写使用 LLM 将初始查询重新表述为多种形式。这使开发人员能够探索数据的不同方面,从而产生更细致和准确的响应。通过重写查询,开发人员可以生成多个查询,用于集成检索和融合检索,从而获得更高质量的检索结果。利用 Azure OpenAI,可以将初始查询分解为多个子查询。

请考虑以下初始查询:

“作者怎么了?”

如果问题过于宽泛,或者似乎不太可能在我们的语料库文本中找到直接的比较,建议将问题分解为多个子查询。

子查询:

  1. “作者最近写的一本书是什么?”
  2. “作者获得过什么文学奖吗?”
  3. “有没有即将举行的活动或对作者的采访?”
  4. “作者的背景和写作风格是什么?”
  5. “围绕作者有什么争议或丑闻吗?”

子问题查询引擎

LlamaIndex 的一大优点是,像这样的高级检索策略是内置在框架中的。例如,可以使用子问题查询引擎在一个步骤中处理上述子查询,该引擎将问题分解为更简单的问题,然后将答案组合成一个响应。

 response = query_engine.query("What happened to the author?")

  

使用 Azure AI 搜索进行检索

为了增强检索功能,Azure AI 搜索提供混合搜索和语义排名。混合搜索同时执行关键字和向量检索,并应用融合步骤(倒数秩融合 (RRF))从每种技术中选择最佳结果。

语义排名器在初始 BM25 排名或 RRF 排名结果上添加辅助排名。该二级排名使用多语言深度学习模型来推广语义上最相关的结果。

通过将“query_type”参数更新为“semantic”,可以很容易地启用语义排名器。由于语义排名是在 Azure AI 搜索堆栈中完成的,因此我们的数据显示,语义排名器与混合搜索相结合是提高相关性的最有效方法。

此外,Azure AI 搜索还支持矢量查询中的筛选器。您可以设置筛选器模式,以便在矢量查询执行之前或之后应用筛选器:

  • 预筛选模式:在查询执行前应用筛选,减少向量搜索算法查找相似内容的搜索表面积。预滤波通常比后滤波慢,但有利于召回率和精确度。
  • 筛选后模式:在查询执行后应用筛选器,缩小搜索结果范围。后过滤比选择更注重速度。

总结

通过与 LlamaIndex 的协作,可以提供更简单的方法来优化预检索和检索,以实现高级 RAG应用。

这篇关于使用Azure AI Search和LlamaIndex构建高级RAG应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917690

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的