使用Azure AI Search和LlamaIndex构建高级RAG应用

2024-04-19 13:36

本文主要是介绍使用Azure AI Search和LlamaIndex构建高级RAG应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RAG 是一种将公司信息合并到基于大型语言模型 (LLM) 的应用程序中的常用方法。借助 RAG,AI 应用程序可以近乎实时地访问最新信息,团队可以保持对其数据的控制。

在 RAG 中,您可以评估和修改各个阶段以改进结果,它们分为三类:预检索、检索和检索后。

  1. 预检索可提高使用查询重写等技术检索的数据的质量。
  2. 检索使用混合搜索和语义排序等高级技术改进结果。
  3. 检索后侧重于优化检索信息和增强提示。

LlamaIndex 为初学者和有经验的开发人员提供了一个全面的框架和生态系统,以在其数据源上构建 LLM 应用程序。

Azure AI Search是一个信息检索平台,具有尖端的搜索技术和无缝的平台集成,专为任何规模的高性能生成式 AI 应用程序而构建。

我们在预检索中使用LlamaIndex 进行查询转换,并使用 Azure AI 搜索进行高级检索,可以生成构建更好的RAG应用程序。

预检索技术和优化查询编排

为了优化预检索,LlamaIndex 提供了查询转换,这是一项优化用户输入的强大功能。一些查询转换技术包括:

  • 路由:保持查询不变,但标识查询应用到的相关工具子集。将这些工具输出为相关选项。
  • 查询重写:保持工具不变,但以各种不同的方式重写查询,以针对相同的工具执行。
  • 子问题:将查询分解为不同工具上的多个子问题,由其元数据标识。
  • ReAct 代理工具选取:给定初始查询,确定 (1) 要选取的工具,以及 (2) 要在工具上执行的查询。

以查询重写为例:查询重写使用 LLM 将初始查询重新表述为多种形式。这使开发人员能够探索数据的不同方面,从而产生更细致和准确的响应。通过重写查询,开发人员可以生成多个查询,用于集成检索和融合检索,从而获得更高质量的检索结果。利用 Azure OpenAI,可以将初始查询分解为多个子查询。

请考虑以下初始查询:

“作者怎么了?”

如果问题过于宽泛,或者似乎不太可能在我们的语料库文本中找到直接的比较,建议将问题分解为多个子查询。

子查询:

  1. “作者最近写的一本书是什么?”
  2. “作者获得过什么文学奖吗?”
  3. “有没有即将举行的活动或对作者的采访?”
  4. “作者的背景和写作风格是什么?”
  5. “围绕作者有什么争议或丑闻吗?”

子问题查询引擎

LlamaIndex 的一大优点是,像这样的高级检索策略是内置在框架中的。例如,可以使用子问题查询引擎在一个步骤中处理上述子查询,该引擎将问题分解为更简单的问题,然后将答案组合成一个响应。

 response = query_engine.query("What happened to the author?")

  

使用 Azure AI 搜索进行检索

为了增强检索功能,Azure AI 搜索提供混合搜索和语义排名。混合搜索同时执行关键字和向量检索,并应用融合步骤(倒数秩融合 (RRF))从每种技术中选择最佳结果。

语义排名器在初始 BM25 排名或 RRF 排名结果上添加辅助排名。该二级排名使用多语言深度学习模型来推广语义上最相关的结果。

通过将“query_type”参数更新为“semantic”,可以很容易地启用语义排名器。由于语义排名是在 Azure AI 搜索堆栈中完成的,因此我们的数据显示,语义排名器与混合搜索相结合是提高相关性的最有效方法。

此外,Azure AI 搜索还支持矢量查询中的筛选器。您可以设置筛选器模式,以便在矢量查询执行之前或之后应用筛选器:

  • 预筛选模式:在查询执行前应用筛选,减少向量搜索算法查找相似内容的搜索表面积。预滤波通常比后滤波慢,但有利于召回率和精确度。
  • 筛选后模式:在查询执行后应用筛选器,缩小搜索结果范围。后过滤比选择更注重速度。

总结

通过与 LlamaIndex 的协作,可以提供更简单的方法来优化预检索和检索,以实现高级 RAG应用。

这篇关于使用Azure AI Search和LlamaIndex构建高级RAG应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917690

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删