吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.4-1.5

本文主要是介绍吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.4-1.5,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 第一门课:第二门课 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)
    • 第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)
      • 1.4 正则化(Regularization)

第一门课:第二门课 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)

第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)

1.4 正则化(Regularization)

深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。

下面我们就来讲讲正则化的作用原理。

我们用逻辑回归来实现这些设想,求成本函数𝐽的最小值,它是我们定义的成本函数,参数包含一些训练数据和不同数据中个体预测的损失,w和b是逻辑回归的两个参数,w是一个多维度参数矢量,b是一个实数。在逻辑回归函数中加入正则化,只需添加参数 λ,也就是正则化参数,一会儿再详细讲。

λ 2 m \frac{λ}{2m} 2mλ乘以w范数的平方,w欧几里德范数的平方等于 w j w_j wj(j 值从 1 到n_x)平方的和,也可表示为 w T w w^Tw wTw,也就是向量参数w 的欧几里德范数(2 范数)的平方,此方法称为𝐿2正则化。因为这里用了欧几里德法线,被称为向量参数𝑤的𝐿2范数。

在这里插入图片描述
为什么只正则化参数𝑤?为什么不再加上参数 𝑏 呢?因为𝑤通常是一个高维参数矢量,已经可以表达高偏差问题,𝑤可能包含有很多参数,
我们不可能拟合所有参数,而𝑏只是单个数字,所以𝑤几乎涵盖所有参数,而不是𝑏,如果加了参数𝑏,其实也没太大影响,因为𝑏只是众多参数中的一个,所以我通常省略不计,如果你想加上这个参数,完全没问题。

𝐿2正则化是最常见的正则化类型,你们可能听说过𝐿1正则化,𝐿1正则化,加的不是𝐿2范数,而是正则项 λ m \frac{λ}{m} mλ乘以 ∑ j = 1 n x ∣ x ∣ \sum_{j=1}^{nx}{|x|} j=1nxx ∑ j = 1 n x ∣ x ∣ \sum_{j=1}^{nx}{|x|} j=1nxx也被称为参数𝑤向量的𝐿1范数,无论分母是𝑚还是2𝑚,它都是一个比例常量。

如果用的是𝐿1正则化,𝑤最终会是稀疏的,也就是说𝑤向量中有很多 0,有人说这样有利于压缩模型,因为集合中参数均为 0,存储模型所占用的内存更少。实际上,虽然𝐿1正则化使模型变得稀疏,却没有降低太多存储内存,所以我认为这并不是𝐿1正则化的目的,至少不是为了压缩模型,人们在训练网络时,越来越倾向于使用𝐿2正则化。

我们来看最后一个细节,𝜆是正则化参数,我们通常使用验证集或交叉验证集来配置这个参数,尝试各种各样的数据,寻找最好的参数,我们要考虑训练集之间的权衡,把参数设置为较小值,这样可以避免过拟合,所以 λ 是另外一个需要调整的超级参数,顺便说一下,为了方便写代码,在 Python 编程语言中,𝜆是一个保留字段,编写代码时,我们写成𝑙𝑎𝑚𝑏𝑑,以免与 Python 中的保留字段冲突,这就是在逻辑回归函数中实现𝐿2正则化的过程,如何在神经网络中实现𝐿2正则化呢?

神经网络含有一个成本函数,该函数包含 W [ 1 ] , b [ 1 ] W^{[1]},b^{[1]} W[1]b[1] W [ l ] , b [ l ] W^{[l]},b^{[l]} W[l]b[l]所有参数,字母𝐿是神经网络所含的层数,因此成本函数等于𝑚个训练样本损失函数的总和乘以 1 m \frac{1}{m} m1,正则项为 λ 2 m ∑ 1 L ∣ ∣ W [ l ] ∣ ∣ 2 \frac{λ}{2m}\sum_{1}^L{||W^{[l]}||^2} 2mλ1L∣∣W[l]2,我们称 ∣ ∣ W [ l ] ∣ ∣ 2 ||W^{[l]}||^2 ∣∣W[l]2为范数平方,这个矩阵范数 ∣ ∣ W [ l ] ∣ ∣ 2 ||W^{[l]}||^2 ∣∣W[l]2(即平方范数),被定义为矩阵中所有元素的平方求和。
在这里插入图片描述
我们看下求和公式的具体参数,第一个求和符号其值i从 1 到 n [ l − 1 ] n^{[l−1]} n[l1],第二个其J值从 1 到 n [ l ] n^{[l]} n[l],因为𝑊是一个 n [ l ] x n [ l − 1 ] n^{[l]} x n^{[l−1]} n[l]xn[l1]的多维矩阵, n [ l ] n^{[l]} n[l]表示𝑙 层单元的数量, n [ l − 1 ] n{[l−1]} n[l1]表示第𝑙 − 1层隐藏单元的数量。
在这里插入图片描述
该矩阵范数被称作“弗罗贝尼乌斯范数”,用下标𝐹标注,鉴于线性代数中一些神秘晦涩的原因,我们不称之为“矩阵𝐿2范数”,而称它为“弗罗贝尼乌斯范数”,矩阵𝐿2范数听起来更自然,但鉴于一些大家无须知道的特殊原因,按照惯例,我们称之为“弗罗贝尼乌斯范数”,它表示一个矩阵中所有元素的平方和。

该如何使用该范数实现梯度下降呢?
用 backprop 计算出𝑑𝑊的值,backprop 会给出𝐽对𝑊的偏导数,实际上是𝑊[𝑙],把𝑊[𝑙]替换为𝑊[𝑙]减去学习率乘以𝑑𝑊。

这就是之前我们额外增加的正则化项,既然已经增加了这个正则项,现在我们要做的就是给dW加上这一项 λ m W [ l ] \frac{λ}{m}W^{[l]} mλW[l],然后计算这个更新项,使用新定义的 d W [ l ] dW^{[l]} dW[l],它的定义含有相关参数代价函数导数和,以及最后添加的额外正则项,这也是𝐿2正则化有时被称为“权重衰减”的原因。
在这里插入图片描述
我们用 d W [ l ] dW^{[l]} dW[l]的定义替换此处的 d W [ l ] dW^{[l]} dW[l],可以看到, W [ l ] W^{[l]} W[l]的定义被更新为 W [ l ] W^{[l]} W[l]减去学习率𝑎 乘以 backprop 再加上 λ m W [ l ] \frac{λ}{m}W^{[l]} mλW[l]
在这里插入图片描述
该正则项说明,不论 W [ l ] W[l] W[l]是什么,我们都试图让它变得更小,实际上,相当于我们给矩阵 W 乘以(1 − 𝑎 λ m \frac{λ}{m} mλ)倍的权重,矩阵𝑊减去𝛼 λ m \frac{λ}{m} mλ倍的它,也就是用这个系数(1 − λ m \frac{λ}{m} mλ)乘以矩阵𝑊,该系数小于 1,因此𝐿2范数正则化也被称为“权重衰减”,因为它就像一般的梯度下降,𝑊被更新为少了𝑎乘以 backprop 输出的最初梯度值,同时𝑊也乘以了这个系数,这个系数小于 1,因此𝐿2正则化也被称为“权重衰减”。

在这里插入图片描述
我不打算这么叫它,之所以叫它“权重衰减”是因为这两项相等,权重指标乘以了一个小于 1 的系数。

以上就是在神经网络中应用𝐿2正则化的过程,有人会问我,为什么正则化可以预防过拟合,我们放在下节课讲,同时直观感受一下正则化是如何预防过拟合的。

这篇关于吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.4-1.5的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917107

相关文章

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分