VGG-pytorch实现

2024-04-19 07:48
文章标签 实现 pytorch vgg

本文主要是介绍VGG-pytorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VGG

1.网络结构

img

如图可见,VGG网络的构造很简单,通过不断地卷积,池化,扩大通道数,降低宽高,最终平展为一维数据再进行softmax分类。相较于AlexNet而言,VGG最大的特征就是降低了卷积核尺寸,增加了卷积核的深度层数,拥有更多的非线性变换,增加了CNN对特征的学习能力。

2.pytorch网络设计

这里采用的数据集为FashionMNIST数据集,慢慢地往后的文章也会引入更多的数据集使用,Fashion MNIST包含了10种类别70000个不同时尚穿戴品的图像,整体数据结构上跟MNIST完全一致。每张图像的尺寸同样是28*28,但下载下来的数据通道数为1。

#定义块
def vgg_block(num_convs, in_channels, num_channels):layers = []for i in range(num_convs):layers += [nn.Conv2d(in_channels=in_channels, out_channels=num_channels, kernel_size=3, padding=1)]in_channels = num_channelslayers += [nn.ReLU()]layers += [nn.MaxPool2d(kernel_size=2, stride=2)]return nn.Sequential(*layers)# 网络定义
class VGG(nn.Module):def __init__(self):super(VGG, self).__init__()# 这里适配输入为3x224x224的图片self.conv_arch = ((1, 3, 64), (1, 64, 128), (2, 128, 256), (2, 256, 512), (2, 512, 512))self.conv_arch_28x28 =((2, 256, 512), (2, 512, 512))# 这里为了适配1x28x28的输入图片大小,对原始网络层做些修改#前四层不做池化,保留原始特征self.conv_28x28=nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1)self.conv_28x28_2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1)self.conv_28x28_3 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1)self.conv_28x28_4 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1)#后4层使用VGG块构造layers = []for (num_convs, in_channels, num_channels) in self.conv_arch_28x28:layers += [vgg_block(num_convs, in_channels, num_channels)]self.features = nn.Sequential(*layers)self.Linear = nn.Linear(512 * 7 * 7, 4096)self.drop1 = nn.Dropout(0.5)self.Linear2 = nn.Linear(4096, 4096)self.drop2 = nn.Dropout(0.5)self.Linear3 = nn.Linear(4096, 10)def forward(self, x):x=F.relu(self.conv_28x28(x))x = F.relu(self.conv_28x28_2(x))x = F.relu(self.conv_28x28_3(x))x = F.relu(self.conv_28x28_4(x))x = self.features(x)x = x.view(-1, 512 * 7 * 7)x = self.Linear3(self.drop2(F.relu(self.Linear2(self.drop1(F.relu(self.Linear(x)))))))return x

3.网络测试

1.数据集读取分类

# 数据增强
draw = draw_tool.draw_tool()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomGrayscale(),transforms.ToTensor()])
# 验证集不增强
transform1 = transforms.Compose([transforms.ToTensor()])train_set = torchvision.datasets.FashionMNIST(root='F:\\pycharm\\dataset', train=True,download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=30,shuffle=True, num_workers=2)test_set = torchvision.datasets.FashionMNIST(root='F:\\pycharm\\dataset', train=False,download=True, transform=transform1)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=30,shuffle=False, num_workers=2)

2.模型训练设置

model = VGG()criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
model = model.to(device)

3.训练

if __name__ == '__main__':for epoch in range(4):train(epoch)torch.save(model.state_dict(), "minist_last.pth")draw.show()

训练部分,可能是由于网络太大,或者是数据集太多的缘故,跑得非常慢,所以这里只针对整个数据集进行了4个epoch训练,训练测试结果如下:
在这里插入图片描述
在这里插入图片描述

最后一次训练的精度达到了86.77%,但明显可以看出还可以继续增加。

4.总结

​ VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,7x7,5x5)。对于给定的感受野,采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。

​ 在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的效果。这点我认为应该是把卷积宽高改革为卷积层数,能更好地去调整参数。

​ 使用3x3卷积核的好处:减少了总体传入显卡的参数,且有利于保护图像的原始性质。
最后非常希望有一样的初学者或者大佬能多评论留言,一起分享一下过程和经历,感激不尽。

5.补充

最近学着用tensorboard,又跑了一遍,记录一下效果。
在这里插入图片描述

这篇关于VGG-pytorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916959

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句