VGG-pytorch实现

2024-04-19 07:48
文章标签 实现 pytorch vgg

本文主要是介绍VGG-pytorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VGG

1.网络结构

img

如图可见,VGG网络的构造很简单,通过不断地卷积,池化,扩大通道数,降低宽高,最终平展为一维数据再进行softmax分类。相较于AlexNet而言,VGG最大的特征就是降低了卷积核尺寸,增加了卷积核的深度层数,拥有更多的非线性变换,增加了CNN对特征的学习能力。

2.pytorch网络设计

这里采用的数据集为FashionMNIST数据集,慢慢地往后的文章也会引入更多的数据集使用,Fashion MNIST包含了10种类别70000个不同时尚穿戴品的图像,整体数据结构上跟MNIST完全一致。每张图像的尺寸同样是28*28,但下载下来的数据通道数为1。

#定义块
def vgg_block(num_convs, in_channels, num_channels):layers = []for i in range(num_convs):layers += [nn.Conv2d(in_channels=in_channels, out_channels=num_channels, kernel_size=3, padding=1)]in_channels = num_channelslayers += [nn.ReLU()]layers += [nn.MaxPool2d(kernel_size=2, stride=2)]return nn.Sequential(*layers)# 网络定义
class VGG(nn.Module):def __init__(self):super(VGG, self).__init__()# 这里适配输入为3x224x224的图片self.conv_arch = ((1, 3, 64), (1, 64, 128), (2, 128, 256), (2, 256, 512), (2, 512, 512))self.conv_arch_28x28 =((2, 256, 512), (2, 512, 512))# 这里为了适配1x28x28的输入图片大小,对原始网络层做些修改#前四层不做池化,保留原始特征self.conv_28x28=nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1)self.conv_28x28_2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1)self.conv_28x28_3 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1)self.conv_28x28_4 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1)#后4层使用VGG块构造layers = []for (num_convs, in_channels, num_channels) in self.conv_arch_28x28:layers += [vgg_block(num_convs, in_channels, num_channels)]self.features = nn.Sequential(*layers)self.Linear = nn.Linear(512 * 7 * 7, 4096)self.drop1 = nn.Dropout(0.5)self.Linear2 = nn.Linear(4096, 4096)self.drop2 = nn.Dropout(0.5)self.Linear3 = nn.Linear(4096, 10)def forward(self, x):x=F.relu(self.conv_28x28(x))x = F.relu(self.conv_28x28_2(x))x = F.relu(self.conv_28x28_3(x))x = F.relu(self.conv_28x28_4(x))x = self.features(x)x = x.view(-1, 512 * 7 * 7)x = self.Linear3(self.drop2(F.relu(self.Linear2(self.drop1(F.relu(self.Linear(x)))))))return x

3.网络测试

1.数据集读取分类

# 数据增强
draw = draw_tool.draw_tool()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomGrayscale(),transforms.ToTensor()])
# 验证集不增强
transform1 = transforms.Compose([transforms.ToTensor()])train_set = torchvision.datasets.FashionMNIST(root='F:\\pycharm\\dataset', train=True,download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=30,shuffle=True, num_workers=2)test_set = torchvision.datasets.FashionMNIST(root='F:\\pycharm\\dataset', train=False,download=True, transform=transform1)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=30,shuffle=False, num_workers=2)

2.模型训练设置

model = VGG()criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
model = model.to(device)

3.训练

if __name__ == '__main__':for epoch in range(4):train(epoch)torch.save(model.state_dict(), "minist_last.pth")draw.show()

训练部分,可能是由于网络太大,或者是数据集太多的缘故,跑得非常慢,所以这里只针对整个数据集进行了4个epoch训练,训练测试结果如下:
在这里插入图片描述
在这里插入图片描述

最后一次训练的精度达到了86.77%,但明显可以看出还可以继续增加。

4.总结

​ VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,7x7,5x5)。对于给定的感受野,采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。

​ 在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的效果。这点我认为应该是把卷积宽高改革为卷积层数,能更好地去调整参数。

​ 使用3x3卷积核的好处:减少了总体传入显卡的参数,且有利于保护图像的原始性质。
最后非常希望有一样的初学者或者大佬能多评论留言,一起分享一下过程和经历,感激不尽。

5.补充

最近学着用tensorboard,又跑了一遍,记录一下效果。
在这里插入图片描述

这篇关于VGG-pytorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916959

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja