AlexNet-pytorch实现

2024-04-19 07:48
文章标签 实现 pytorch alexnet

本文主要是介绍AlexNet-pytorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AlexNet

1.网络架构

如图所示可见其结构为:

img

AlexNet网络共八层,五层卷积层和三层全连接层。这是一个非常经典的设计,为后续神经网络的发展提供了极大的贡献。

2.pytorch网络设计

网络设计部分做了一些小的修改,目的是为了适配minist的3x28x28的输入图片大小。

网络构造代码部分:

class AlexNet(nn.Module):def __init__(self):super(AlexNet, self).__init__()self.conv = nn.Sequential(nn.Conv2d(3, 96, 11, 1, 5),  # in_channels, out_channels, kernel_size, stride, paddingnn.ReLU(),nn.MaxPool2d(3, 1),  # kernel_size, stride 26x26# 减少卷积窗口,使用填充为2来使输入输出大小一致nn.Conv2d(96, 256, 5, 1, 2),nn.ReLU(),nn.MaxPool2d(4, 2),  # 12x12# 下面接三个卷积层nn.Conv2d(256, 384, 3, 1, 1),nn.ReLU(),nn.Conv2d(384, 384, 3, 1, 1),nn.ReLU(),nn.Conv2d(384, 256, 3, 1, 1),nn.ReLU(),nn.MaxPool2d(4, 2)  # 5x5)self.fc = nn.Sequential(nn.Linear(256 * 5 * 5, 4096),nn.Dropout(0.5),nn.Linear(4096, 4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10),)def forward(self, img):img.shape[0]# img.resize_(3,224,224)feature = self.conv(img)output = self.fc(feature.view(img.shape[0], -1))return output

3.网络测试

一些基础设置与上一篇文章一致,还是贴一下代码。

网络测试部分我使用的是minist数据集,为了贴近真实(主要是方便我自己懂),在下载了数据集之后将其转为了图片数据集,更为直观。数据集分为train 和test两部分,在测试中需要做如下配置:

1.依赖资源引入

draw_tool是一个自己编写的绘制loss,acc的画图库,device使用了我电脑的1050ti显卡。

import torch
from matplotlib import pyplot as plt
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F
from torch import nn
from torchsummary import summary
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import draw_toolroot = "F:/pycharm/dataset/mnist/MNIST/"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
draw = draw_tool.draw_tool()

2.数据集的读取和分类

#加载图片
def default_loader(path):return Image.open(path).convert('RGB')#构造标注和图片相关
class MyDataset(Dataset):def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):fh = open(txt, 'r')imgs = []for line in fh:line = line.strip('\n')line = line.rstrip()words = line.split()imgs.append((words[0], int(words[1])))self.imgs = imgsself.transform = transformself.target_transform = target_transformself.loader = loaderdef __getitem__(self, index):fn, label = self.imgs[index]img = self.loader(fn)if self.transform is not None:img = self.transform(img)return img, labeldef __len__(self):return len(self.imgs)train_data = MyDataset(txt=root + 'rawtrain.txt', transform=transforms.ToTensor())
test_data = MyDataset(txt=root + 'rawtest.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=31, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=31, shuffle=True)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

3.模型训练设置

model = AlexNet()
#使用softmax分类
criterion = torch.nn.CrossEntropyLoss()
#设置随机梯度下降 学习率和L2正则
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
#使用GPU训练
model = model.to(device)

4.训练

每训练一个epoch 做一次平均loss train acc test acc的计算绘制

def train(epoch):running_loss = 0.0num_correct = 0.0total = 0correct = 0total = 0test_acc = 0.0# trainfor batch_idx, data in enumerate(train_loader, 0):inputs, target = datainputs = inputs.to(device)target = target.to(device)optimizer.zero_grad()# forward + backward + updateoutputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()_, predicted = torch.max(outputs.data, dim=1)total += target.size(0)num_correct += (predicted == target).sum().item()# #test# with torch.no_grad():#     for data in test_loader:#         images, labels = data#         images = images.to(device)#         labels = labels.to(device)#         outputs = model(images)#         _, predicted = torch.max(outputs.data, dim=1)#         total += labels.size(0)##         correct += (predicted == labels).sum().item()print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / len(train_loader)))# print('Accuracy on test set: %d %%' % (100 * correct / total))# test_acc=100 * correct / totaltest_acc = test()acc = (num_correct / len(train_loader.dataset) * 100)print("num_correct=")print(acc)running_loss /= len(train_loader)draw.new_data(running_loss, acc, test_acc, 2)draw.draw()def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataimages = images.to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()test_acc = 100 * correct / totalprint('Accuracy on test set: ', test_acc, '%')return test_acc

5.结果统计

if __name__ == '__main__':for epoch in range(20):train(epoch)torch.save(model.state_dict(), "minist_last.pth")draw.show()

在这里插入图片描述

从图中效果可以看到随着训练次数的增加,loss在不断下降,train acc 和test acc 也在慢慢收敛,最终达到了train acc=97% test acc=96%的效果。但与之前上一文的训练有一样的问题所在,不知道为什么中途的test acc会突然下降,这里就不在往下继续训练了,网络变得更为复杂并不代表精度一定会上升,反而对于简单数据的预测来说,只会更差。

留下一个问题,就是为什么我的test acc 会突然下滑这么多,如果有朋友有自己的想法或者有大佬愿意回复我一下还请评论一下,谢谢。

这篇关于AlexNet-pytorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916958

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依