AlexNet-pytorch实现

2024-04-19 07:48
文章标签 实现 pytorch alexnet

本文主要是介绍AlexNet-pytorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AlexNet

1.网络架构

如图所示可见其结构为:

img

AlexNet网络共八层,五层卷积层和三层全连接层。这是一个非常经典的设计,为后续神经网络的发展提供了极大的贡献。

2.pytorch网络设计

网络设计部分做了一些小的修改,目的是为了适配minist的3x28x28的输入图片大小。

网络构造代码部分:

class AlexNet(nn.Module):def __init__(self):super(AlexNet, self).__init__()self.conv = nn.Sequential(nn.Conv2d(3, 96, 11, 1, 5),  # in_channels, out_channels, kernel_size, stride, paddingnn.ReLU(),nn.MaxPool2d(3, 1),  # kernel_size, stride 26x26# 减少卷积窗口,使用填充为2来使输入输出大小一致nn.Conv2d(96, 256, 5, 1, 2),nn.ReLU(),nn.MaxPool2d(4, 2),  # 12x12# 下面接三个卷积层nn.Conv2d(256, 384, 3, 1, 1),nn.ReLU(),nn.Conv2d(384, 384, 3, 1, 1),nn.ReLU(),nn.Conv2d(384, 256, 3, 1, 1),nn.ReLU(),nn.MaxPool2d(4, 2)  # 5x5)self.fc = nn.Sequential(nn.Linear(256 * 5 * 5, 4096),nn.Dropout(0.5),nn.Linear(4096, 4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10),)def forward(self, img):img.shape[0]# img.resize_(3,224,224)feature = self.conv(img)output = self.fc(feature.view(img.shape[0], -1))return output

3.网络测试

一些基础设置与上一篇文章一致,还是贴一下代码。

网络测试部分我使用的是minist数据集,为了贴近真实(主要是方便我自己懂),在下载了数据集之后将其转为了图片数据集,更为直观。数据集分为train 和test两部分,在测试中需要做如下配置:

1.依赖资源引入

draw_tool是一个自己编写的绘制loss,acc的画图库,device使用了我电脑的1050ti显卡。

import torch
from matplotlib import pyplot as plt
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F
from torch import nn
from torchsummary import summary
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import draw_toolroot = "F:/pycharm/dataset/mnist/MNIST/"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
draw = draw_tool.draw_tool()

2.数据集的读取和分类

#加载图片
def default_loader(path):return Image.open(path).convert('RGB')#构造标注和图片相关
class MyDataset(Dataset):def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):fh = open(txt, 'r')imgs = []for line in fh:line = line.strip('\n')line = line.rstrip()words = line.split()imgs.append((words[0], int(words[1])))self.imgs = imgsself.transform = transformself.target_transform = target_transformself.loader = loaderdef __getitem__(self, index):fn, label = self.imgs[index]img = self.loader(fn)if self.transform is not None:img = self.transform(img)return img, labeldef __len__(self):return len(self.imgs)train_data = MyDataset(txt=root + 'rawtrain.txt', transform=transforms.ToTensor())
test_data = MyDataset(txt=root + 'rawtest.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=31, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=31, shuffle=True)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

3.模型训练设置

model = AlexNet()
#使用softmax分类
criterion = torch.nn.CrossEntropyLoss()
#设置随机梯度下降 学习率和L2正则
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
#使用GPU训练
model = model.to(device)

4.训练

每训练一个epoch 做一次平均loss train acc test acc的计算绘制

def train(epoch):running_loss = 0.0num_correct = 0.0total = 0correct = 0total = 0test_acc = 0.0# trainfor batch_idx, data in enumerate(train_loader, 0):inputs, target = datainputs = inputs.to(device)target = target.to(device)optimizer.zero_grad()# forward + backward + updateoutputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()_, predicted = torch.max(outputs.data, dim=1)total += target.size(0)num_correct += (predicted == target).sum().item()# #test# with torch.no_grad():#     for data in test_loader:#         images, labels = data#         images = images.to(device)#         labels = labels.to(device)#         outputs = model(images)#         _, predicted = torch.max(outputs.data, dim=1)#         total += labels.size(0)##         correct += (predicted == labels).sum().item()print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / len(train_loader)))# print('Accuracy on test set: %d %%' % (100 * correct / total))# test_acc=100 * correct / totaltest_acc = test()acc = (num_correct / len(train_loader.dataset) * 100)print("num_correct=")print(acc)running_loss /= len(train_loader)draw.new_data(running_loss, acc, test_acc, 2)draw.draw()def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataimages = images.to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()test_acc = 100 * correct / totalprint('Accuracy on test set: ', test_acc, '%')return test_acc

5.结果统计

if __name__ == '__main__':for epoch in range(20):train(epoch)torch.save(model.state_dict(), "minist_last.pth")draw.show()

在这里插入图片描述

从图中效果可以看到随着训练次数的增加,loss在不断下降,train acc 和test acc 也在慢慢收敛,最终达到了train acc=97% test acc=96%的效果。但与之前上一文的训练有一样的问题所在,不知道为什么中途的test acc会突然下降,这里就不在往下继续训练了,网络变得更为复杂并不代表精度一定会上升,反而对于简单数据的预测来说,只会更差。

留下一个问题,就是为什么我的test acc 会突然下滑这么多,如果有朋友有自己的想法或者有大佬愿意回复我一下还请评论一下,谢谢。

这篇关于AlexNet-pytorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916958

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到