BaiChuan13B-GPTQ量化详解

2024-04-19 05:44
文章标签 详解 量化 gptq baichuan13b

本文主要是介绍BaiChuan13B-GPTQ量化详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

知识要点:
1、按照网上搜索的一些代码,如使用auto_gptq原生库进行训练后量化,可能会正常量化,但是在线推理时会出现如找不到bin文件或者tf文件,即模型权重文件,所以和网上大部分代码不同的地方在于,需要提前保存对应模型的权重文件,如果是BaiChuan13B,那么在进行模型量化前,对其进行保存
代码如下:

def save_bin(pretrained_model_dir, quantized_model_dir):from transformers import AutoModelForCausalLMimport torchimport osoriginal_model = AutoModelForCausalLM.from_pretrained(pretrained_model_dir, trust_remote_code=True,torch_dtype=torch.float16,      # 不执行这个保存的bin文件会非常的大,大概50多Gsafetensors=True)print("保存bin文件...")model_path = os.path.join(quantized_model_dir, "pytorch_model"+".bin")torch.save(original_model.state_dict(), model_path)print("保存bin文件完成...")

量化代码,使用原生库auto_gptq进行量化:

def from_authority_autogptq(pretrained_model_dir, quantized_model_dir):from transformers import AutoTokenizer, AutoModelForCausalLMfrom auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfigimport loggingimport torchimport oslogging.basicConfig(format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")# 量化分词器加载tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=False, trust_remote_code=True)examples = [tokenizer("auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm.")]# 量化参数配置quantize_config = BaseQuantizeConfig(bits=4,             # quantize model to 4-bitgroup_size=128,     # it is recommended to set the value to 128desc_act=False,     # set to False can significantly speed up inference but the perplexity may slightly bad)# load un-quantized model, by default, the model will always be loaded into CPU memoryquantize_model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config=quantize_config, trust_remote_code=True,device_map="auto",)print("开始量化模型.......")quantize_model.quantize(examples)# save model weightsprint("保存量化文件...")quantize_model.save_quantized(quantized_model_dir)print("保存量化文件完成...")print("保存tokenizer...")tokenizer.save_pretrained(quantized_model_dir)print("保存tokenizer完成...")

按照上述步骤,此时模型量化文件保存成功,接下来就是模型在线推理

def get_baichuan2_autogptq(quantized_model_dir):from transformers import AutoModelForCausalLM, AutoTokenizerfrom transformers.generation.utils import GenerationConfigimport torch# 模型地址model_id = quantized_model_dirprint("加载分词器tokenizer...")tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,use_fast=False)'''warnings.warn(f'Input type into Linear4bit is torch.float16, but bnb_4bit_compute_type=torch.float32 (default).This will lead to slow inference or training speed'''print("加载量化model...")quantized_model_4bit = AutoModelForCausalLM.from_pretrained(# 要载入的模型名称model_id, load_in_4bit=True,# 仅使用本地模型,不通过网络下载模型local_files_only=True,# 指定模型精度torch_dtype=torch.float16,trust_remote_code=True,safetensors=True)print("加载config...")quantized_model_4bit.generation_config = GenerationConfig.from_pretrained(model_id)# 实例测试print("生成...")messages = []messages.append({"role": "user", "content":"亚历山大为何如此厉害"})response = quantized_model_4bit.chat(tokenizer, messages)print(response)return response 

最后整合代码:

'''bin 文件是保存的是原始的加载模型文件,不涉及量化操作的模型过程,不然会报错或者加载不出来!!!'''
def save_bin(pretrained_model_dir, quantized_model_dir):from transformers import AutoModelForCausalLMimport torchimport osoriginal_model = AutoModelForCausalLM.from_pretrained(pretrained_model_dir, trust_remote_code=True,torch_dtype=torch.float16,      # 不执行这个保存的bin文件会非常的大,大概50多Gsafetensors=True)print("保存bin文件...")model_path = os.path.join(quantized_model_dir, "pytorch_model"+".bin")torch.save(original_model.state_dict(), model_path)print("保存bin文件完成...")# auto_gptq原生库, 量化占用显存7-10G不等,用时23分钟,推理18G
def from_authority_autogptq(pretrained_model_dir, quantized_model_dir):from transformers import AutoTokenizer, AutoModelForCausalLMfrom auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfigimport loggingimport torchimport oslogging.basicConfig(format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")# 量化分词器加载tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=False, trust_remote_code=True)examples = [tokenizer("auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm.")]# 量化参数配置quantize_config = BaseQuantizeConfig(bits=4,             # quantize model to 4-bitgroup_size=128,     # it is recommended to set the value to 128desc_act=False,     # set to False can significantly speed up inference but the perplexity may slightly bad)# load un-quantized model, by default, the model will always be loaded into CPU memoryquantize_model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config=quantize_config, trust_remote_code=True,device_map="auto",)print("开始量化模型.......")quantize_model.quantize(examples)# save model weightsprint("保存量化文件...")quantize_model.save_quantized(quantized_model_dir)print("保存量化文件完成...")print("保存tokenizer...")tokenizer.save_pretrained(quantized_model_dir)print("保存tokenizer完成...")# 加载量化后的模型方法
def get_baichuan2_autogptq(quantized_model_dir):from transformers import AutoModelForCausalLM, AutoTokenizerfrom transformers.generation.utils import GenerationConfigimport torch# 模型地址model_id = quantized_model_dirprint("加载分词器tokenizer...")tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,use_fast=False)'''warnings.warn(f'Input type into Linear4bit is torch.float16, but bnb_4bit_compute_type=torch.float32 (default).This will lead to slow inference or training speed'''print("加载量化model...")quantized_model_4bit = AutoModelForCausalLM.from_pretrained(# 要载入的模型名称model_id, load_in_4bit=True,# 仅使用本地模型,不通过网络下载模型local_files_only=True,# 指定模型精度torch_dtype=torch.float16,trust_remote_code=True,safetensors=True)print("加载config...")quantized_model_4bit.generation_config = GenerationConfig.from_pretrained(model_id)# 实例测试print("生成...")messages = []messages.append({"role": "user", "content":"```桥架\n1、名称:机房走线架(铝合金) 2、规格:300mm*100mm 3、含支吊架制作安装 4、其它:具体详见图纸、技术规范书、图集、招标文件、招标答疑、政府相关文件、规范等其它资料,满足验收要求```\n请仔细阅读上文,并从中分析出实体列表中的各实体。请使用json字典格式回答,其中,键为各实体名称,值为从文本中提取出的内容(若没有相应实体则值为'无')。\n实体列表如下(目标实体之间通过“;”隔开): ```名称;型号;材质;类型;规格;接地方式```"})response = quantized_model_4bit.chat(tokenizer, messages)print(response)return response if __name__ == "__main__":# from_transformers_autogptq 方法量化模型# pretrained_model_dir = "/root/lk/big_model/Baichuan2-13B-Chat"# quantized_model_dir = "/root/lk/big_model/baichuan2_autogptq"# from_transformers_autogptq(pretrained_model_dir, quantized_model_dir)import datetimeprint("程序开始时间------->>>>>>", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))# 地址pretrained_model_dir = "/root/lk/big_model/Baichuan2-13B-Chat"quantized_model_dir = "/root/lk/big_model/baichuan2_autogptq"# 第一步:保存原始模型的Bin文件,然后再量化(很关键)# save_bin(pretrained_model_dir, quantized_model_dir)# 第二部:执行来自autogptq原始包量化模型# from_authority_autogptq(pretrained_model_dir, quantized_model_dir)# 第三部:使用量化模型进行推理(需要添加对应文件)get_baichuan2_autogptq(quantized_model_dir)print("程序结束时间------->>>>>>", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))

对应包版本:

auto-gptq==0.6.0
transformers==4.39.2
torch==2.0.1

这篇关于BaiChuan13B-GPTQ量化详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916752

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input