【数学建模】建筑工地开工问题

2024-04-18 21:20

本文主要是介绍【数学建模】建筑工地开工问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:
某公司有 6 6 6个建筑工地要开工,每个工地的位置(用平面坐标 ( a , b ) (a,b) (a,b)表示,距离单位: k m km km)及水泥日用量 d ( 单位 : t ) d(单位:t) d(单位:t)由下表给出,目前有两个临时料场位于 P ( 5 , 1 ) , Q ( 2 , 7 ) P(5,1),Q(2,7) P(5,1)Q(2,7),日储量各有 20 t 20t 20t

工地123456
a1.258.750.55.7537.25
b1.250.754.7556.57.75
d3547611

研究下列问题:

  • 1)假设从料场到工地之间均有直线道路相连,试制定每天的供应计划,即从每个料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
    • 如果工地到工地之间也有道路连接
  • 2)为了进一步减少吨公里数,打算舍弃目前的两个临时料场,改建两个新的临时料场日储量还是20t,给出新料场的位置。

1)假设从料场到工地之间均有直线道路相连,试制定每天的供应计划,即从每个料场分别向各工地运送多少吨水泥,使总的吨公里数最小。

首先我们要知道吨公里数是什么:
设运送水泥为 x x x吨,运送了 y y y公里,那么吨公里数就是 x y xy xy

所以我们可以设每次运输水泥为 x i x_i xi吨,运送了 y i y_i yi公里,那么总的吨公里数最小模型就是
min ⁡ ∑ i ∈ N ( x i y i ) \min{\sum_{ i\in N }(x_iy_i)} miniN(xiyi)

建立供应条件模型:
设料场 i i i到工地 j j j的运输量为 X i j X_{ij} Xij
则所有料场向某工地运输量之和大于等于该工地水泥日用量 d i d_i di
∑ j ∈ N X i j > = d i , i ∈ N \sum_{ j\in N }X_{ij} >= d_i, i\in N jNXij>=di,iN
且某料场对所有工地运算量之和不得超过料场的日储量 e j e_j ej:
∑ i ∈ N X i j ≤ e j , j ∈ N \sum_{ i\in N }X_{ij} \le e_j, j\in N iNXijej,jN

最后建立料场和工地距离模型:
设料场 P ( x , y ) P(x,y) P(x,y)到工地 A ( a , b ) A(a,b) A(a,b)的运输量为 d i s P A dis_{PA} disPA
则: d i s P A = ( x − a ) 2 + ( y − b ) 2 dis_{PA} = \sqrt{(x-a)^2+(y-b)^2} disPA=(xa)2+(yb)2

已知有6个工地和2个料场
将料场和工地距离模型和供应条件模型带入吨公里数最小模型可得:
a n s = min ⁡ ∑ i ∈ N ( X i j d i s i j ) , j = 1 , 2 ans = \min{\sum_{ i\in N }(X_{ij}dis_{ij})},j=1,2 ans=miniN(Xijdisij),j=1,2
或者
a n s = min ⁡ ∑ j = 1 , 2 ∑ i ∈ N , i < = 6 ( X i j d i s i j ) ans = \min{\sum_{j=1,2 }\sum_{ i\in N ,i<=6 }(X_{ij}dis_{ij})} ans=minj=1,2iN,i<=6(Xijdisij)

建模后带入已知进行LINGO求解:

sets:aa/1..6/:a,b,d;bb/1..2/:e,x,y;cc(aa,bb):k;
endsets
data:a = 1.25,8.75,0.5,5.75,3,7.25;b = 1.25,0.75,4.75,5,6.5,7.75;d = 3,5,4,7,6,11;e = 20,20;x = 5,2;y = 1,7;
enddata
min = @sum(cc(i,j):k(i,j)*@sqrt((a(i)-x(j))^2 + (b(i)-y(j))^2));
@for(aa(i):@sum(bb(j):k(i,j))=d(i));
@for(bb(j):@sum(aa(i):k(i,j))<=e(j));

解出:

Objective value:                              136.2275K( 1, 1)        3.000000            0.000000K( 1, 2)        0.000000            3.852207K( 2, 1)        5.000000            0.000000K( 2, 2)        0.000000            7.252685K( 3, 1)        0.000000            1.341700K( 3, 2)        4.000000            0.000000K( 4, 1)        7.000000            0.000000K( 4, 2)        0.000000            1.992119K( 5, 1)        0.000000            2.922492K( 5, 2)        6.000000            0.000000K( 6, 1)        1.000000            0.000000K( 6, 2)        10.00000            0.000000

如果工地到工地之间也有道路连接

假设每个工地都是一个点,那么这个点送进的水泥数量 i n i in_i ini和送出的水泥数量 o u t i out_i outi需要满足 i n i − o u t i > = d i in_i - out_i >= d_i iniouti>=di d i d_i di为该点水泥日用量
如果把料场也算进去,那么就需要设料场的 d d d为0即可,即料场可以不留任何水泥

将所有的道路编号 z = 1 , 2 , 3 , 4... z=1,2,3,4... z=1,2,3,4...,设改道路

编程求解
思路1:
化成图 , 遍历每个工厂,找到工厂到料场的最短距离(bfs),用这个最短距离替换料场和工地距离再带入上面问题模型求解即可:
C++:

#include <iostream>
#include <cmath>
#include <queue>
using namespace  std;
double a[10] = {0, 1.25,8.75,0.5,5.75,3,7.25,5,2},b[10] = {0, 1.25,0.75,4.75,5,6.5,7.75,1,7};
double px = 5 , py = 1;
double qx = 2 , qy = 7;
double dis[10][10];
double min_dis[10]; // p
double min_dis2[10]; // qvoid bfs(int begin){queue<int>q;q.push(begin);while(!q.empty()){int x = q.front();q.pop();for(int i=1;i<=8;i++){if(begin == 7){if(min_dis[i] > min_dis[x] + dis[x][i]){min_dis[i] = min_dis[x] + dis[x][i];q.push(i);}}else{if(min_dis2[i] > min_dis2[x] + dis[x][i]){min_dis2[i] = min_dis2[x] + dis[x][i];q.push(i);}}}}
}int main() {//init disfor(int i=1;i<=8;i++){for(int j=i+1;j<=8;j++){dis[i][j] = dis[j][i] = sqrt((a[i]-a[j]) * (a[i]-a[j])+  (b[i]-b[j])*(b[i]-b[j])); // 初始化距离}}for(int i=1;i<=6;i++)min_dis[i] = min_dis2[i] = 0x3f3f3f3f; // max setmin_dis[7] = min_dis2[8] = 0;bfs(7); // pbfs(8); // qfor(int i=1;i<=6;i++){cout << min_dis[i] << ' ';}cout << '\n';for(int i=1;i<=6;i++){cout << min_dis2[i] << ' ';}cout << '\n';return 0;
}

求解得

3.75832 3.75832 5.85769 4.06971 5.85235 7.11512
5.79871 9.19918 2.70416 4.25 1.11803 5.3033

或者:

for(int i=1;i<=6;i++){cout << min_dis[i] << ',';cout << min_dis2[i] << ',';}

求解得

3.75832,5.79871,3.75832,9.19918,5.85769,2.70416,4.06971,4.25,5.85235,1.11803,7.11512,5.3033,
sets:aa/1..6/:d;bb/1..2/:e;cc(bb,aa):k,dis;
endsets
data:d = 3,5,4,7,6,11;e = 20,20;dis= 3.75832,3.75832,5.85769,4.06971,5.85235,7.11512,5.79871,9.19918,2.70416,4.25,1.11803,5.3033;
enddata
min = @sum(cc(i,j):k(i,j)*dis(i,j));
@for(aa(i):@sum(bb(j):k(j,i))=d(i));
@for(bb(j):@sum(aa(i):k(j,i))<=e(j));
Objective value:                              136.2275Infeasibilities:                              0.000000

2)为了进一步减少吨公里数,打算舍弃目前的两个临时料场,改建两个新的临时料场日储量还是20t,给出新料场的位置。

直接用第一问的模型:
a n s = min ⁡ ∑ j = 1 , 2 ∑ i ∈ N , i < = 6 ( X i j d i s i j ) ans = \min{\sum_{j=1,2 }\sum_{ i\in N ,i<=6 }(X_{ij}dis_{ij})} ans=minj=1,2iN,i<=6(Xijdisij)
设新料场坐标为 P ( x 1 , y 2 ) P(x_1,y_2) P(x1,y2) Q ( x 2 , y 2 ) Q(x_2,y_2) Q(x2,y2)
则:
a n s = min ⁡ ∑ j = 1 , 2 ∑ i ∈ N , i < = 6 X i j ( x j − a i ) 2 + ( y j − b i ) 2 ans = \min{\sum_{j=1,2 }\sum_{ i\in N ,i<=6 }X_{ij} \sqrt{(x_j-a_i)^2+(y_j-b_i)^2}} ans=minj=1,2iN,i<=6Xij(xjai)2+(yjbi)2

如果直接带入LINGO求解,实际上就是问题一的答案去掉 x , y x,y x,y的复制

sets:aa/1..6/:a,b,d;bb/1..2/:e,x,y;cc(aa,bb):k;
endsets
data:a = 1.25,8.75,0.5,5.75,3,7.25;b = 1.25,0.75,4.75,5,6.5,7.75;d = 3,5,4,7,6,11;e = 20,20;!x = 5,2;!y = 1,7;
enddata
min = @sum(cc(i,j):k(i,j)*@sqrt((a(i)-x(j))^2 + (b(i)-y(j))^2));
@for(aa(i):@sum(bb(j):k(i,j))=d(i));
@for(bb(j):@sum(aa(i):k(i,j))<=e(j));

如果赋初值给 x , y x,y x,y

sets:aa/1..6/:a,b,d;bb/1..2/:e,x,y;cc(aa,bb):k;
endsets
data:a = 1.25,8.75,0.5,5.75,3,7.25;b = 1.25,0.75,4.75,5,6.5,7.75;d = 3,5,4,7,6,11;e = 20,20;enddata
init:x = 5,2;y = 1,7;
endinit
min = @sum(cc(i,j):k(i,j)*@sqrt((a(i)-x(j))^2 + (b(i)-y(j))^2));
@for(aa(i):@sum(bb(j):k(i,j))=d(i));
@for(bb(j):@sum(aa(i):k(i,j))<=e(j));

MATLAB求解看数学规划模型(2)-非线性规划

这篇关于【数学建模】建筑工地开工问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/915866

相关文章

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具