开源代码分享(21)-两阶段鲁棒优化的主动配电网动态无功优化

本文主要是介绍开源代码分享(21)-两阶段鲁棒优化的主动配电网动态无功优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.引言

        由于分布式电源接入配电网的比例不断升高,分布式电源出力和负荷难以准确预测,给配电网的无功优化带来了许多不确定性,使得传统的的确定性无功优化模型得到的控制策略不准确。考虑设备损耗,配电网的无功控制装置中的分组投切电容器组和有载调压分接头,这些装置不能频繁的操作,虽然这些装置能够有效的应对电压波动,但是针对快速的秒级到分钟级的较小电压波动
的,一方面受限于操作次数的限制,不能频繁的去操作;另一方面离散装置响应速度比较慢,无法有效应对电压波动。针对负荷和分布式电源的预测曲线,由于预测的误差较大,得出的控制策略可能导致电压可能越界,所以在制定控制策略的时候必须考虑不确定性。
        输电网中由于线路电阻 R 通常小于线路电抗 X,输电网中有功和无功通常能够解耦控制,而配电网 R/X 的比值较大,无法实现有功与无功的解耦控制,所以配电网的电压控制需要有功与无功协调控制。主动配电网中含储能和可控DG,这些装置能够快速地进行控制,如何协调快速设备和慢速设备(CB)的控制来应对主动配电网中的不确定性是一个值得深入研究的课题。

2. 鲁棒优化模型及求解方法

        鲁棒优化是用于解决不确性问题的一种方法,不同于随机规划对于不确定量假设满足某种不确定参数的分布,突破了过多依靠先验知识的服从概率分布的假定 [71] 。鲁棒优化的目的是:求的解满足所有约束条件,对于可能出现的所有情况,在最坏的情况下使得目标函数值最优的解。

2.1 鲁棒优化一般模型

        鲁棒优化模型一般如下所示:

        式中:x为决策变量;u为不确定参数; f(x,u)为目标函数; g(x,u)≤0为约束条件。u为不确定参数,根据不确定参数所在的集合不同,可以分为:盒式不确定集、椭球不确定集、多面体不确定集[72]。

        上述鲁棒优化模型中通常难以求解需要进行等价转化,其基本思路,是将不确定参数以集合和的形式加入到鲁棒模型中,这样以数学的形式从而将鲁棒模型的不确定量剔除掉,转化为鲁棒等价模型,通常使用soyster 提出的min-max模型,又称之为单阶段鲁棒模型,其形式如下:

2.2 两阶段鲁棒优化简介

2.3两阶段鲁棒优化模型求解方法

        两阶段鲁棒优化求解方法有:列约束生成法[73] ( column-and-con-straingeneration,C&CG)和 Benders分解法,C&CG算法的求解性能要优于Bender分解法。

        C&CG算法的求解是分为主问题和子问题来求解,主问题为目标函数确定的一个下界值,首先假设不确定场景为离散的形式,U= {u1,…,ur},这样对应的决策变量为{x1 , …,xr},由于不确定场景不是全部的场景,这样优化结果为目标函数的一个下界值,所枚举出的不确定场景与优化结果无关,这是因为子问题求解出的场景不断的添加到主问题中,使主问题中目标函数的下界值不断增大,通常而言,如果不确定场景占有的全部场景比较多,那么收敛速度会加快,其主问题模型如下:

        主问题得到的决策变量 y 带到子问题中来,会得到不确定场景 u 和决策变量 x,由于得到的场景是主问题中决策变量所对应的场景,那么子问题得到的值是目标函数的一个上界值,那么再将子问题中的场景加到主问题中,主问题的决策变量又可以得到目标函数的一个下界值,反复上一过程,直到上界值和确定值之差满足于收敛判据,此时迭代结束。

3.两阶段鲁棒优化的电压控制模型

        为了应对分布式电源和负荷的不确定性对配电网运行决策带来的影响,建立了两阶段的鲁棒优化模型,将离散变量作为第一阶段的控制变量,如储能的充放电标志的二进制变量,分组投切电容器组的投切组数,将连续变量作为第二阶段的控制变量,如储能的充放电功率,静止无功补偿器的补偿量。一方面由于含有离散控制变量的装置启动时间较长,启动周期为数十分钟到几个小时,
另一方面含有离散控制变量装置频繁操作会降低设备的使用寿命,控制策略是连续变量的装置,相对于含离散变量的装置的来说,其能够快速地进行控制,所以离算变量的控制策略在应对配电网的不确定性制定的控制策略中会显得尤其重要,从而将其作为第一阶段的控制变量,使得在第一阶段离散装置的控制策略,能够保证配电网在最恶劣的场景下,第二阶段的控制策略使得配电网安全、稳定、经济地运行。建立的两阶段鲁棒优化的模型主动管理装置中含有储能、分组投切电容器组、静止无功补偿器,DG,详细解释在第二章和第三章中介绍过了,其模型如下:

        为了表述方便,将式(5.9)~(5.25)用紧凑型的表达式如下:

4.代码运行结果

5.完整代码获取

两阶段鲁棒优化的主动配电网动态无功优化的matlab代码资源-CSDN文库

这篇关于开源代码分享(21)-两阶段鲁棒优化的主动配电网动态无功优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/915273

相关文章

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.