sklearn【AUC-ROC】原理,以及绘制ROC曲线!

2024-04-18 13:20

本文主要是介绍sklearn【AUC-ROC】原理,以及绘制ROC曲线!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、AUC-ROC 介绍

在分类任务中,特别是当数据集中的类别分布不平衡时,评估模型的性能变得尤为重要。AUC-ROC(Area Under the Receiver Operating Characteristic Curve,受试者工作特征曲线下的面积)是一种有效的评估指标,能够全面反映模型在不同分类阈值下的性能,并特别适用于不平衡类别的场景。本文将介绍如何使用sklearn库来计算AUC-ROC,并解释其背后的计算原理。

首先,我们需要理解AUC-ROC的计算方式和其背后的含义。AUC-ROC是通过绘制ROC曲线并计算其下的面积来得到的。

ROC曲线是真正例率(True Positive Rate,TPR)和假正例率(False Positive Rate,FPR)在不同分类阈值下的关系曲线。TPR是真正例占所有正例的比例,FPR是假正例占所有反例的比例。

AUC-ROC的值越接近1,表示模型的性能越好,能够更好地区分正例和反例。

在sklearn库中,我们可以使用roc_auc_score函数来计算AUC-ROC。下面我们将通过一个简单的例子来演示如何使用这个函数。

二、案例学习

首先,我们需要准备数据集和分类模型。在这个例子中,我们将使用sklearn自带的乳腺癌数据集(Breast Cancer Wisconsin dataset),并使用逻辑回归作为分类器。

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt# 加载乳腺癌数据集
cancer = datasets.load_breast_cancer()
X = cancer.data
y = cancer.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建逻辑回归模型
model = LogisticRegression(solver='liblinear')# 使用训练数据进行训练
model.fit(X_train, y_train)

接下来,我们将使用模型对测试集进行预测,并计算预测为正例的概率。这些概率将用于绘制ROC曲线。

# 对测试集进行预测概率的估计
y_pred_prob = model.predict_proba(X_test)[:, 1]

然后,我们可以使用roc_curve函数来计算真正例率和假正例率,并使用这些值来绘制ROC曲线。

# 计算真正例率(TPR)和假正例率(FPR)
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)# 计算AUC-ROC的值
roc_auc = auc(fpr, tpr)# 绘制ROC曲线
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic Example')
plt.legend(loc="lower right")
plt.show()

运行结果:
AUC-ROC曲线.png

在上面的代码中,我们首先使用roc_curve函数计算了真正例率和假正例率,并使用auc函数计算了AUC-ROC的值。然后,我们使用matplotlib库来绘制ROC曲线。曲线越接近左上角,表示模型的性能越好。对角线表示一个无用的模型,即随机猜测。

通过绘制ROC曲线,我们可以直观地看到模型在不同分类阈值下的性能表现。曲线的形状和AUC-ROC的值可以帮助我们评估模型在区分正例和反例时的能力。如果曲线越接近左上角,并且AUC-ROC的值越接近1,那么模型的性能就越好。

此外,我们还可以将ROC曲线与其他评估指标(如准确率、精确度、召回率等)进行比较,以更全面地了解模型的性能。ROC曲线的一个优点是它不受特定分类阈值的影响,因此可以提供更稳健的性能评估。

三、总结

在实际应用中,我们可以根据具体的问题和数据集选择合适的分类模型和评估指标,并使用Python和sklearn库来绘制ROC曲线,以便更好地了解模型的性能并进行优化。通过不断迭代和改进模型,我们可以提高模型的分类性能,并更好地应对不平衡类别等挑战。

这篇关于sklearn【AUC-ROC】原理,以及绘制ROC曲线!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914902

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、