Android Sensor Input类型 (四) Sensor HAL 实现

2024-04-18 10:58

本文主要是介绍Android Sensor Input类型 (四) Sensor HAL 实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

msm8909 Sensor HAL

代码路径:code/hardware/qcom/sensors/

核心作用:封装对 sensor的方法,不直接通过本地C库直接访问

├── Accelerometer.cpp
├── AccelSensor.h
├── AkmSensor.cpp
├── AkmSensor.h
├── algo
├── Android.mk
├── Bmp180.cpp
├── CalibrationManager.cpp
├── CalibrationManager.h
├── CalibrationModule.h
├── calmodule.cfg
├── CompassSensor.cpp
├── CompassSensor.h
├── Gyroscope.cpp
├── GyroSensor.h
├── InputEventReader.cpp
├── InputEventReader.h
├── LICENSE
├── LightSensor.cpp
├── LightSensor.h
├── NativeSensorManager.cpp
├── NativeSensorManager.h
├── PressureSensor.h
├── ProximitySensor.cpp
├── ProximitySensor.h
├── SensorBase.cpp
├── SensorBase.h
├── sensors.cpp
├── sensors_extension.h
├── sensors.h
├── sensors_XML.cpp
├── sensors_XML.h
├── SignificantMotion.cpp
├── SignificantMotion.h
├── VirtualSensor.cpp
└── VirtualSensor.h

重要文件有:

sensors.cpp

sensors.cpp 中提供数据机构架构,提供 hw_device_t 封装; 让其他层可以获得这个结构,得以使用其中的方法;

通过实现的结构可以发现,所有的操作都使用了, NativeSensorManager用来做具体的操作

NativeSensorManager.cpp

Native SensorManager 是个class,继承Singleton; 单例模式,只存在一个对象;

即被多次定义引用的对象 sm; 它的存在是统一管理sensor HAL的sensor访问;

将存在的sensor统一存在数组里,不针对sensor具体类型; 是HAL的实际操作者;

SensorBase.cpp

VirtualSensor.cpp

sensors主要设备结构

sensor_t

struct sensor_t {const char*     name;//!< sensor名称 By: jixuanconst char*     vendor;//!< 厂商名 By: jixuan int             version;int             handleint             type;//!< 类型标识 By: jixuanfloat           maxRange;float           resolution;//!< 解析度 即报告数值的最大差异范围 By: jixuan float           power;int32_t         minDelay;uint32_t        fifoReservedEventCount;uint32_t        fifoMaxEventCount;//!< 类型字符串 Note By: yujixuan const char*    stringType;//!< 权限 Note By: yujixuan const char*    requiredPermission;void*           reserved[2];
};

sensor_moudule_t

struct sensors_module_t {struct hw_module_t common;//!< hw_module_t 基础结构 >! NoteBy: yujixuan int (*get_sensors_list)(struct sensors_module_t* module,struct sensor_t const** list);//!< 拓展接口,获取sensor 列表 >! NoteBy:yujixuanint (*set_operation_mode)(unsigned int mode);//!< 操作设置sensor mode >! NoteBy: yujixuan
};//!< 定义 名为HMI的 hw_module_t 结构体(可以转型为包含它的具体设备类型,首地址保持相同),get_module 获取它 >! NoteBy: yujixuan
struct sensors_module_t HAL_MODULE_INFO_SYM = {common: {tag: HARDWARE_MODULE_TAG,  //!< 固定名 >! NoteBy: yujixuanversion_major: 1,version_minor: 0,id: SENSORS_HARDWARE_MODULE_ID, name: "Quic Sensor module",author: "Quic",methods: &sensors_module_methods,  //!< hw_module_t 必要填充的方法 >! NoteBy: yujixuandso: NULL,reserved: {0},},get_sensors_list: sensors__get_sensors_list,  //!< sensor_module_t 拓展的方法 >! NoteBy: yujixuan
};
static struct hw_module_methods_t sensors_module_methods = {open: open_sensors  //!< 只有一个open函数,它的作用是返回具体的 device >! NoteBy: yujixuan
};
//!< 打开一个新的sensor 实例 填充具体的hw_device_t>! NoteBy: yujixuan

open函数实现:open_sensors

#define HAL_MODULE_INFO_SYM        HMI
#define HAL_MODULE_INFO_SYM_AS_STR  "HMI"static int open_sensors(const struct hw_module_t* module, const char*,struct hw_device_t** device)
{int status = -EINVAL;sensors_poll_context_t *dev = new sensors_poll_context_t();NativeSensorManager& sm(NativeSensorManager::getInstance());memset(&dev->device, 0, sizeof(sensors_poll_device_1_ext_t));dev->device.common.tag = HARDWARE_DEVICE_TAG;
#if defined(SENSORS_DEVICE_API_VERSION_1_3)ALOGI("Sensors device API version 1.3 supported\n");dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_3;
#elsedev->device.common.version = SENSORS_DEVICE_API_VERSION_0_1;
#endifdev->device.common.module   = const_cast<hw_module_t*>(module);dev->device.common.close	= poll__close;dev->device.activate		= poll__activate;dev->device.setDelay		= poll__setDelay;dev->device.poll		= poll__poll;dev->device.calibrate		= poll_calibrate;
#if defined(SENSORS_DEVICE_API_VERSION_1_3)dev->device.batch		= poll__batch;dev->device.flush		= poll__flush;
#endif*device = &dev->device.common;status = 0;return status;
}

open_sensors新的sensor 实例,首先new了一个sensors_poll_context_tdevice ,然后设置该device,并返回 给到调用者;

针对 sensors_poll_context_t 下面内容会做具体分析;

static int sensors__get_sensors_list(struct sensors_module_t*,struct sensor_t const** list)
{NativeSensorManager& sm(NativeSensorManager::getInstance());return sm.getSensorList(list);
}

拓展的sensors_module_t 中添加了 get_sensor_list方法;

可以看到它是通过NativeSensorManger 来做具体的Hal层访问;

Sensor服务用户程序不能直接访问,通过NativeSensorManager来访问。 (note: nativeSensorManager是指在HAL中的管理sensor的设备结构,需要区别于Android Framework中的SensorManager)

里面使用了NativeSensorManagersensors__get_sensors_list函数中调用单例模式创建了一个实例sm,通过调用其中的成员函数获取传感器列表,并返回,返回值对应的sensor_t结构体;NativeSensorManager统一管理着所有的传感器、物理和虚拟传感器;

SensorHAL 解析

Native Sensor Hal框架中,最为主要的内容即是 open函数中对device的回调设置;简单的可以理解为是上层函数与调用底层驱动的桥接;

所以在Hal这个层次应着重分析这块内容;,由上可知,当前的代码里是通过sensors_poll_context_t来定义一个device; 以下是 sensors_poll_context_t 的内容:

sensors_poll_context_t

struct sensors_poll_context_t {// extension for sensors_poll_device_1, must be firststruct sensors_poll_device_1_ext_t device;// must be first//!< 必须放在首个位置,它是个联合体,首个属性是 hw_device_t; >! NoteBy: yujixuansensors_poll_context_t();~sensors_poll_context_t();//!<struct同样有构造函数,析构函数,完成重要的初始化功能 >! NoteBy: yujixuanint activate(int handle, int enabled);int setDelay(int handle, int64_t ns);int pollEvents(sensors_event_t* data, int count);int calibrate(int handle, cal_cmd_t *para);int batch(int handle, int sample_ns, int latency_ns);int flush(int handle);private:static const size_t wake = MAX_SENSORS;static const char WAKE_MESSAGE = 'W';struct pollfd mPollFds[MAX_SENSORS+1];int mWritePipeFd;SensorBase* mSensors[MAX_SENSORS];mutable Mutex mLock;
};

通过open函数返回的的是hw_device_t,实际是传入的地址值;只要保证,包含此结构,且sensors_poll_device_1_ext_t放在首位,可以向上转型回具体的sensor

设备device;

实际device的函数调用 都是拓展的;比如上面的 activate; setDelay; pollEvents;等;

struct sensors_poll_device_1_ext_t {union {struct sensors_poll_device_1 aosp;struct {struct hw_device_t common;int (*activate)(struct sensors_poll_device_t *dev,int handle, int enabled);int (*setDelay)(struct sensors_poll_device_t *dev,int handle, int64_t period_ns);int (*poll)(struct sensors_poll_device_t *dev,sensors_event_t* data, int count);int (*batch)(struct sensors_poll_device_1* dev,int handle, int flags, int64_t period_ns, int64_t timeout);int (*flush)(struct sensors_poll_device_1* dev, int handle);void (*reserved_procs[8])(void);};};struct sensors_poll_device_t {struct hw_device_t common;int (*activate)(struct sensors_poll_device_t *dev,int sensor_handle, int enabled);int (*setDelay)(struct sensors_poll_device_t *dev,int sensor_handle, int64_t sampling_period_ns);int (*poll)(struct sensors_poll_device_t *dev,sensors_event_t* data, int count);
};

通过sensors_poll_device_1_ext_t也可以看出,实际sensors_poll_context_t 可以是sensors_poll_device_t

这是面向对象 多态的思想方式; 获取到的device根据具体的类型,再转换为具体的 device进行函数调用;

实际device的函数调用 都是拓展的;比如上面的 activate; setDelay; pollEvents;等;

在open函数中,new一个实例对象;sensors_poll_context_t会调用其构造函数完成最重要的初始化功能,如下:

sensors_poll_context_t::sensors_poll_context_t()
{int number;int i;const struct sensor_t *slist; const struct SensorContext *context;NativeSensorManager& sm(NativeSensorManager::getInstance());number = sm.getSensorList(&slist);//!< 获取sensor个数; 与sensor构成的链表list >! NoteBy: yujixuan/* use the dynamic sensor list */for (i = 0; i < number; i++) {context = sm.getInfoByHandle(slist[i].handle);mPollFds[i].fd = (context == NULL) ? -1 : context->data_fd;mPollFds[i].events = POLLIN;mPollFds[i].revents = 0;}ALOGI("The avaliable sensor handle number is %d",i);int wakeFds[2];int result = pipe(wakeFds);ALOGE_IF(result<0, "error creating wake pipe (%s)", strerror(errno));fcntl(wakeFds[0], F_SETFL, O_NONBLOCK);fcntl(wakeFds[1], F_SETFL, O_NONBLOCK);mWritePipeFd = wakeFds[1];mPollFds[number].fd = wakeFds[0];mPollFds[number].events = POLLIN;mPollFds[number].revents = 0;
}

构造函数中,通过NativeSensorManager 获取了sensor 列表;

通过struct SensorContext *context;

context = sm.getInfoByHandle(slist[i].handle);

维系记录了handle对应的SensorContext对象指针的句柄;SensorContext 的结构如下:

SensorContext

struct SensorContext {char   name[SYSFS_MAXLEN]; // name of the sensorchar   vendor[SYSFS_MAXLEN]; // vendor of the sensorchar   enable_path[PATH_MAX]; // the control path of this sensorchar   data_path[PATH_MAX]; // the data path to get sensor eventsstruct sensor_t *sensor; // point to the sensor_t structure in the sensor listSensorBase     *driver; // point to the sensor driver instanceint data_fd; // the file descriptor of the data device nodeint enable; // indicate if the sensor is enabledbool is_virtual; // indicate if this is a virtual sensorint64_t delay_ns; // the poll delay setting of this sensorint64_t latency_ns; // the max report latency of this sensorstruct listnode dep_list; // the background sensor type needed for this sensorstruct listnode listener; // the head of listeners of this sensor
};

从上可以看出: SensorContext中的 SensorBase *driver; 指向了具体的sensor实例;

在构造函数中,还完成了pollfd即mPollFds用来监听senso时用的文件描述符;

open函数的后面的部分,也就是对sensors_poll_context_t 拓展的那些方法的链接;

比如:

        dev->device.common.close    = poll__close;dev->device.activate        = poll__activate;dev->device.setDelay        = poll__setDelay;dev->device.poll        = poll__poll;dev->device.calibrate        = poll_calibrate;

poll函数分析

这里分析下,最重要的一个函数 poll__poll;

static int poll__poll(struct sensors_poll_device_t *dev,sensors_event_t* data, int count) {sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;//!< 这里就用到了 向上转型;将sensor_poll_device_t 转为 sensor_poll_context_t >! NoteBy: yujixuanreturn ctx->pollEvents(data, count);//!< 返回pollEvents >! NoteBy: yujixuan
}
int sensors_poll_context_t::pollEvents(sensors_event_t* data, int count)
{int nbEvents = 0;int n = 0;NativeSensorManager& sm(NativeSensorManager::getInstance());const sensor_t *slist;int number = sm.getSensorList(&slist);do {// see if we have some leftover from the last poll()for (int i = 0 ; count && i < number ; i++) {if ((mPollFds[i].revents & POLLIN) || (sm.hasPendingEvents(slist[i].handle))) {Mutex::Autolock _l(mLock);int nb = sm.readEvents(slist[i].handle, data, count);if (nb < 0) {ALOGE("readEvents failed.(%d)", errno);return nb;}if (nb <= count) {// no more data for this sensormPollFds[i].revents = 0;}count -= nb;nbEvents += nb;data += nb;}}if (count) {// we still have some room, so try to see if we can get// some events immediately or just wait if we don't have// anything to returndo {n = poll(mPollFds, number + 1, nbEvents ? 0 : -1);} while (n < 0 && errno == EINTR);if (n<0) {ALOGE("poll() failed (%s)", strerror(errno));return -errno;}if (mPollFds[number].revents & POLLIN) {char msg;int result = read(mPollFds[number].fd, &msg, 1);ALOGE_IF(result<0, "error reading from wake pipe (%s)", strerror(errno));ALOGE_IF(msg != WAKE_MESSAGE, "unknown message on wake queue (0x%02x)", int(msg));mPollFds[number].revents = 0;}}// if we have events and space, go read them} while (n && count);return nbEvents;
}

主要函数:sm.readEvents(slist[i].handle, data, count);

NativeSensorManager::readEvents中调用了:

nb = list->driver->readEvents(data, count);

list->driver是一个SensorBase结构体,SensorBase结构体的函数readEvents,

这里就需要联合 nativesensormanger的实现来看具体的读取流程;

nativesensormanger相关内容,在后续的内容中分析;

这篇关于Android Sensor Input类型 (四) Sensor HAL 实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914588

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句