(Boolan) C++ 类型大小和内存分布(虚函数指针、虚表、内存对齐问题)

本文主要是介绍(Boolan) C++ 类型大小和内存分布(虚函数指针、虚表、内存对齐问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


题目要求

回答:

(以下大部分都是基于x64编译器下的windows平台的gcc version 5.3.0 (GCC)编译器的测试结果,不能其他平台也能得出完全一致的结论,如果在x32下编译结果会指出)
由于class相较于struct,默认的成员就是private,代码中没有特地强调private

  • Fruit的类型大小为32,Apple的类型大小为40。

    • 完整测试用代码:
      http://rextester.com/AUJV82101
      • 点击上方连接可以进入全套代码,点击左下角的“run”按钮可以查看运行后的结果。
      • 说明:
        • 程序所有的对象均创建在栈中,由系统自动管理,无需手动释放内存
  • 图示:


Fruit类型的大小所占的内存(x64编译器下的结构) 4 * 8 = 32 Byte

注:虚函数指针因为是一个指针,其大小应该为4个字节,但在此我想说,如果使用x64编译器生成的64位程序的指针大小为8个字节。(一个只含有虚函数的struct,x64编译旗下,虚函数指针为8字节;x86编译器上虚函数指针和普通指针没啥区别,都是4个字节)。
在后续我有详细的测试论证过程。


Fruit类型的大小所占的内存(x86编译器下的结构) 4 * 8 = 32 Byte

Apple类型的大小所占的内存(x64编译器下的结构) 5 * 8 = 40 Byte

Apple类型的大小所占的内存(x86编译器下的结构) 5 * 8 = 40 Byte

关于答案以下是非常详细的测试和推理,篇幅较长,感谢您阅读,希望您多多指正。

答案分析:

  • 完整测试用代码:
    http://rextester.com/AUJV82101
    • 点击上方连接可以进入全套代码,点击左下角的“run”按钮可以查看运行后的结果。
    • 代码运行的初级结论

      代码初级结论(x64编译器的结果)
- Fruit类和Apple类的相关定义class Fruit {int no;double weight;char key;public:void print() {   }virtual void process() {   }};class Apple : public Fruit {int size;char type;public:void save() {   }virtual void process() {   }};
  • 提出疑问
    1 对于Fruit类来说,成员由int、double和char组成,其中,不难由程序员算结果可知sizeof(int) = 4、sizeof(double) = 8、sizeof(char) = 1,那么1+4+8=13,为何sizeof(Fruit)的结果为32?
    2 对于Apple来说,成员有int、char组成,其中,不难由程序得知sizeof(int) = 4、sizeof(char) = 1,那么1 + 4 = 5,为何sizeof(Apple)的结果为40呢?
    3 这样定义是否合理,是否存在着内存的浪费?
    4 内存中的额外空间用做了什么?这些空间是否有规律可循?他们是什么?都占多大的内存空间?
    ......

  • 分析:

    为了弄清楚这些疑问,需要准备一系列的代码来做实验。

    • 首先我们先来验证最基础的一个特点就是内存对齐的问题。
      • 什么是内存对齐。内存对齐是 编译器 层面管理的问题,是编译器管理数据位置的一种组织方式。
      • 对齐系数。其实可以把他理解为编译器的来存放内存时,划分内存空间的一把“尺子”。通过这个尺子来量出该怎么划分内存空间。也可以把它理解为切内存——这块蛋糕,所用的最小单位。如果被选中了相应的对其系数,那么,也就决定了存放数据的内存单元的每一行有多宽,所以得出来的内存空间大小,一定是对其系数的倍数!
        • 那么如何来得到对齐系数呢?

          方式一:
          程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。

          方式二:
          由编译器自信决定。对于我这次测试的平台来说,这个编译器的规则为,采用成员中最长的变量的长度作为对其系数

        • 既然知道了对齐系数,那么是否可以帮助解释之前提出的疑问呢?!
          答案是,可以解释部分内容,想要全部弄明白还得等等,我们先来看看这块能解释多少吧。
          如果这时候那Fruit为例来看,它其中的成员有int,double和char所组成,这三个变量中,最长的应该是double了。所以Fruit的大小一定是sizeof(double)的倍数,也就是8的倍数。目前看,Fruit的大小为32,是符合这个观点的。那么这三个成员是如何排列呢?
          其实他们的安排顺序还是狠简单粗暴的,就是定义变量的顺序来组织他们在内存中的位置。
          比如,Fruit的成员定义顺序是int,double,char,则编译器会先将int按照,对齐系数放入内存中,再看后面的变量,如果,两者相加小于对齐系数,则放在同一行,如果大于,就单独再开一行。那么,Fruit的对齐系数为double的8,sizeof(int)+sizeof(double)

这篇关于(Boolan) C++ 类型大小和内存分布(虚函数指针、虚表、内存对齐问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914222

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决