RPN(区域生成网络)

2024-04-18 04:48
文章标签 区域 生成 网络 rpn

本文主要是介绍RPN(区域生成网络),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RPN全称是Region Proposal Network,Region Proposal的中文意思是“区域选取”,也就是“提取候选框”的意思,所以RPN就是用来提取候选框的网络。

1. RPN的意义

      RPN第一次出现在世人眼中是在Faster RCNN这个结构中,专门用来提取候选框,在RCNN和Fast RCNN等物体检测架构中,用来提取候选框的方法通常是Selective Search,是比较传统的方法,而且比较耗时,在CPU上要2s一张图。所以作者提出RPN,专门用来提取候选框,一方面RPN耗时少,另一方面RPN可以很容易结合到Fast RCNN中,称为一个整体。

RPN的引入,可以说是真正意义上把物体检测整个流程融入到一个神经网络中,这个网络结构叫做Faster RCNN; Faster RCNN = RPN + Fast RCNN 

图1 Faster RCNN的整体结构

  我们不难发现,RPN在整个Faster RCNN中的位置,处于中间部分;

2. RPN的运作机制

  我们先来看看Faster RCNN原文中的图: 

图2 RPN的结构

  图2展示了RPN的整个过程,一个特征图经过sliding window处理,得到256维特征,然后通过两次全连接得到结果2k个分数和4k个坐标;相信大家一定有很多不懂的地方;我把相关的问题一一列举:

  1. RPN的input 特征图指的是哪个特征图?
  2. 为什么是用sliding window?文中不是说用CNN么?
  3. 256维特征向量如何获得的?
  4. 2k和4k中的k指的是什么?
  5. 图右侧不同形状的矩形和Anchors又是如何得到的?

  首先回答第一个问题,RPN的输入特征图就是图1中Faster RCNN的公共Feature Map,也称共享Feature Map,主要用以RPN和RoI Pooling共享;

  对于第二个问题,我们可以把3x3的sliding window看作是对特征图做了一次3x3的卷积操作,最后得到了一个channel数目是256的特征图,尺寸和公共特征图相同,我们假设是256 x (H x W);

  对于第三个问题,我们可以近似的把这个特征图看作有H x W个向量,每个向量是256维,那么图中的256维指的就是其中一个向量,然后我们要对每个特征向量做两次全连接操作,一个得到2个分数,一个得到4个坐标,由于我们要对每个向量做同样的全连接操作,等同于对整个特征图做两次1 x 1的卷积,得到一个2 x H x W和一个4 x H x W大小的特征图,换句话说,有H x W个结果,每个结果包含2个分数和4个坐标;

图3 问题1,2,3的解答描述图

  这里我们需要解释一下为何是2个分数,因为RPN是提候选框,还不用判断类别,所以只要求区分是不是物体就行,那么就有两个分数,前景(物体)的分数,和背景的分数; 
  我们还需要注意:4个坐标是指针对原图坐标的偏移,首先一定要记住是原图;
  此时读者肯定有疑问,原图哪里来的坐标呢?
  这里我要解答最后两个问题了:
  首先我们知道有H x W个结果,我们随机取一点,它跟原图肯定是有个一一映射关系的,由于原图和特征图大小不同,所以特征图上的一个点对应原图肯定是一个框,然而这个框很小,比如说8 x 8,这里8是指原图和特征图的比例,所以这个并不是我们想要的框,那我们不妨把框的左上角或者框的中心作为锚点(Anchor),然后想象出一堆框,具体多少,聪明的读者肯定已经猜到,K个,这也就是图中所说的K anchor boxes(由锚点产生的K个框);换句话说,H x W个点,每个点对应原图有K个框,那么就有H x W x k个框默默的在原图上,那RPN的结果其实就是判断这些框是不是物体以及他们的偏移;那么K个框到底有多大,长宽比是多少?这里是预先设定好的,共有9种组合,所以k等于9,最后我们的结果是针对这9种组合的,所以有H x W x 9个结果,也就是18个分数和36个坐标;
图4 问题4,5的解答描述图

3. RPN的整个流程回顾

  最后我们再把RPN整个流程走一遍,首先通过一系列卷积得到公共特征图,假设他的大小是N x 16 x 16,然后我们进入RPN阶段,首先经过一个3 x 3的卷积,得到一个256 x 16 x 16的特征图,也可以看作16 x 16个256维特征向量,然后经过两次1 x 1的卷积,分别得到一个18 x 16 x 16的特征图,和一个36 x 16 x 16的特征图,也就是16 x 16 x 9个结果,每个结果包含2个分数和4个坐标,再结合预先定义的Anchors,经过后处理,就得到候选框;整个流程如图5:


图5 RPN整个流程

这篇关于RPN(区域生成网络)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913804

相关文章

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与