校验用户画像的准确性

2024-04-18 04:48
文章标签 校验 用户 准确性 画像

本文主要是介绍校验用户画像的准确性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用户画像是数据运营的基础,也是做深度挖掘的一个不可或缺的模块。只有先打好画像基础,确保画像质量,后续的深挖行为才有突破的可能。

一. 用户画像开发中
    1.1 Recall、Pecision、K-S、F1曲线、Roc曲线、Confusion Matrix、AUC
    1.2  交叉验证
二. 用户画像上线后
三. 用户画像更新
    3.1 用户回访
    3.2 机制检测


在用户研究的课题中,用户画像是几乎每个公司都会去做的,浅层的包括统计类的:上月购买量,上周活跃天数等;深层的包括洞察类的:潜在需求偏好,生命周期阶段等;前者的校验简单,后者的校验需要通过一些特别的方式。本文就洞察类画像校验做一系列的梳理。

省略掉预处理设计的过程,画像校验的步骤主要集中在画像开发,画像上线,画像更新中,并且三个阶段中,每个阶段的校验方式不尽不同

一. 用户画像开发中

当我们所开发的用户画像是类似于用户的下单需求、用户的购车意愿、用户是否有注册意愿这一类存在历史的正负样本的有监督的问题,我们可以利用历史确定的数据来校验我们的画像准确性。比如,银行在设计用户征信的画像前,会有一批外部购买的坏样本和好样本,其实画像问题就转化为分类问题去解决评估了。

1.1 Recall、Pecision、K-S、F1曲线、Roc曲线、Confusion Matrix、AUC

针对这类问题,已经有较为成熟的理论基础,直接利用测试样本判断的准确程度判断画像是否准确

这张图是一张非常常见也是有效的来总结Recall、Pecision、Lift曲线、Roc曲线、Confusion Matrix的图。

FPR = FP/(FP + TN)

Recall=TPR=TP/(TP+FN)

Precision=TP/(TP+FP)

F1曲线:2*Precision*Recall/(Precision+Recall)

Roc曲线:TPR vs FPR,也就是Precision vs Recall

Auc:area under the roc curve ,也就是roc曲线下面的面积,积分或者投点法均可求解。

1.2  交叉验证

并不是所有画像都是有监督训练的画像,举个例子,用户的性别画像,是一个无监督的刻画,当你无法通过app端资料填写直接获取到的时候,你只能够通过其他数据特征的对用户进行分群。

首先,我们在总的数据集中筛选出所有关键影响特征,每次将筛选出的特征分为两块,测试特征训练特征,利用训练特征建立模型,再利用测试特征去判断模型是否合理(比如女鞋用户群的女鞋购买次数小于男性用户群,则次模型异常,删除),最后集成所有合理模型。

这样的逻辑中,我们将所有异常不合理的模型全部剔除,训练过程中就校验了用户画像的准确性。

二. 用户画像上线后

ABTest

不得不说,abtest是用户画像校验最为直观有效的校验方式。

用户分流模块:

一句话解释,就是A1=A2保证分配随机,A3好于A1+A2的效果检验画像是否准确?多准确?

三. 用户画像更新

3.1 用户回访

在画像刻画完成后,必然会存在画像优化迭代的过程,客服回访是非常常见且有效的方式。

比如,我们定义了一波潜在流失用户10万人,随机抽取1000人,进行回访,根据回访结果做文本挖掘,提取关键词,看消极词用户的占比;

(来源网络)

3.2 机制检测

再比如,我们定义了一波忠诚用户10万人,随机抽取100人,后台随机获取用户安装app的列表,看用户同类app的下载量数目的分布;

横轴为用户手机中同类竞品安装量的个数,纵轴为对应的随机抽样的100人中的个数。

  • 人群1分布为忠诚用户画像最准确的,同类app下载量集中在1附近,定义的用户极为准确
  • 人群2分布杂乱
  • 人群3分布在下降量异常高的数值附近,定义人群不准确

用户画像是数据运营的基础,也是做深度挖掘的一个不可或缺的模块。只有先打好画像基础,确保画像质量,后续的深挖行为才有突破的可能。

这篇关于校验用户画像的准确性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913803

相关文章

Springboot中JWT登录校验及其拦截器实现方法

《Springboot中JWT登录校验及其拦截器实现方法》:本文主要介绍Springboot中JWT登录校验及其拦截器实现方法的相关资料,包括引入Maven坐标、获取Token、JWT拦截器的实现... 目录前言一、JWT是什么?二、实现步骤1.引入Maven坐标2.获取Token3.JWT拦截器的实现4.

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文

Springboot项目登录校验功能实现

《Springboot项目登录校验功能实现》本文介绍了Web登录校验的重要性,对比了Cookie、Session和JWT三种会话技术,分析其优缺点,并讲解了过滤器与拦截器的统一拦截方案,推荐使用JWT... 目录引言一、登录校验的基本概念二、HTTP协议的无状态性三、会话跟android踪技术1. Cook

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

SpringSecurity显示用户账号已被锁定的原因及解决方案

《SpringSecurity显示用户账号已被锁定的原因及解决方案》SpringSecurity中用户账号被锁定问题源于UserDetails接口方法返回值错误,解决方案是修正isAccountNon... 目录SpringSecurity显示用户账号已被锁定的解决方案1.问题出现前的工作2.问题出现原因各