校验用户画像的准确性

2024-04-18 04:48
文章标签 校验 用户 准确性 画像

本文主要是介绍校验用户画像的准确性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用户画像是数据运营的基础,也是做深度挖掘的一个不可或缺的模块。只有先打好画像基础,确保画像质量,后续的深挖行为才有突破的可能。

一. 用户画像开发中
    1.1 Recall、Pecision、K-S、F1曲线、Roc曲线、Confusion Matrix、AUC
    1.2  交叉验证
二. 用户画像上线后
三. 用户画像更新
    3.1 用户回访
    3.2 机制检测


在用户研究的课题中,用户画像是几乎每个公司都会去做的,浅层的包括统计类的:上月购买量,上周活跃天数等;深层的包括洞察类的:潜在需求偏好,生命周期阶段等;前者的校验简单,后者的校验需要通过一些特别的方式。本文就洞察类画像校验做一系列的梳理。

省略掉预处理设计的过程,画像校验的步骤主要集中在画像开发,画像上线,画像更新中,并且三个阶段中,每个阶段的校验方式不尽不同

一. 用户画像开发中

当我们所开发的用户画像是类似于用户的下单需求、用户的购车意愿、用户是否有注册意愿这一类存在历史的正负样本的有监督的问题,我们可以利用历史确定的数据来校验我们的画像准确性。比如,银行在设计用户征信的画像前,会有一批外部购买的坏样本和好样本,其实画像问题就转化为分类问题去解决评估了。

1.1 Recall、Pecision、K-S、F1曲线、Roc曲线、Confusion Matrix、AUC

针对这类问题,已经有较为成熟的理论基础,直接利用测试样本判断的准确程度判断画像是否准确

这张图是一张非常常见也是有效的来总结Recall、Pecision、Lift曲线、Roc曲线、Confusion Matrix的图。

FPR = FP/(FP + TN)

Recall=TPR=TP/(TP+FN)

Precision=TP/(TP+FP)

F1曲线:2*Precision*Recall/(Precision+Recall)

Roc曲线:TPR vs FPR,也就是Precision vs Recall

Auc:area under the roc curve ,也就是roc曲线下面的面积,积分或者投点法均可求解。

1.2  交叉验证

并不是所有画像都是有监督训练的画像,举个例子,用户的性别画像,是一个无监督的刻画,当你无法通过app端资料填写直接获取到的时候,你只能够通过其他数据特征的对用户进行分群。

首先,我们在总的数据集中筛选出所有关键影响特征,每次将筛选出的特征分为两块,测试特征训练特征,利用训练特征建立模型,再利用测试特征去判断模型是否合理(比如女鞋用户群的女鞋购买次数小于男性用户群,则次模型异常,删除),最后集成所有合理模型。

这样的逻辑中,我们将所有异常不合理的模型全部剔除,训练过程中就校验了用户画像的准确性。

二. 用户画像上线后

ABTest

不得不说,abtest是用户画像校验最为直观有效的校验方式。

用户分流模块:

一句话解释,就是A1=A2保证分配随机,A3好于A1+A2的效果检验画像是否准确?多准确?

三. 用户画像更新

3.1 用户回访

在画像刻画完成后,必然会存在画像优化迭代的过程,客服回访是非常常见且有效的方式。

比如,我们定义了一波潜在流失用户10万人,随机抽取1000人,进行回访,根据回访结果做文本挖掘,提取关键词,看消极词用户的占比;

(来源网络)

3.2 机制检测

再比如,我们定义了一波忠诚用户10万人,随机抽取100人,后台随机获取用户安装app的列表,看用户同类app的下载量数目的分布;

横轴为用户手机中同类竞品安装量的个数,纵轴为对应的随机抽样的100人中的个数。

  • 人群1分布为忠诚用户画像最准确的,同类app下载量集中在1附近,定义的用户极为准确
  • 人群2分布杂乱
  • 人群3分布在下降量异常高的数值附近,定义人群不准确

用户画像是数据运营的基础,也是做深度挖掘的一个不可或缺的模块。只有先打好画像基础,确保画像质量,后续的深挖行为才有突破的可能。

这篇关于校验用户画像的准确性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913803

相关文章

Mysql中的用户管理实践

《Mysql中的用户管理实践》:本文主要介绍Mysql中的用户管理实践,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录13. 用户管理13.1 用户 13.1.1 用户信息 13.1.2 创建用户 13.1.3 删除用户 13.1.4 修改用户

Python FastAPI实现JWT校验的完整指南

《PythonFastAPI实现JWT校验的完整指南》在现代Web开发中,构建安全的API接口是开发者必须面对的核心挑战之一,本文将深入探讨如何基于FastAPI实现JWT(JSONWebToken... 目录一、JWT认证的核心原理二、项目初始化与环境配置三、安全密码处理机制四、JWT令牌的生成与验证五、

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

Spring Validation中9个数据校验工具使用指南

《SpringValidation中9个数据校验工具使用指南》SpringValidation作为Spring生态系统的重要组成部分,提供了一套强大而灵活的数据校验机制,本文给大家介绍了Spring... 目录1. Bean Validation基础注解常用注解示例在控制器中应用2. 自定义约束验证器定义自

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

SpringBoot UserAgentUtils获取用户浏览器的用法

《SpringBootUserAgentUtils获取用户浏览器的用法》UserAgentUtils是于处理用户代理(User-Agent)字符串的工具类,一般用于解析和处理浏览器、操作系统以及设备... 目录介绍效果图依赖封装客户端工具封装IP工具实体类获取设备信息入库介绍UserAgentUtils

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1