【机器学习300问】74、如何理解深度学习中L2正则化技术?

2024-04-18 03:12

本文主要是介绍【机器学习300问】74、如何理解深度学习中L2正则化技术?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        深度学习过程中,若模型出现了过拟合问题体现为高方差。有两种解决方法:

  1. 增加训练样本的数量
  2. 采用正则化技术

        增加训练样本的数量是一种非常可靠的方法,但有时候你没办法获得足够多的训练数据或者获取数据的成本很高,这时候正则化技术就可以有效的帮助你避免模型过拟合。接下来本文就来讲解一下深度学习中的正则化起作用的原理(文中以L2正则化为例)。

        有关正则化的基础知识,可以回看我之前的文章哦:

【机器学习300问】18、正则化是如何解决过拟合问题的?icon-default.png?t=N7T8http://t.csdnimg.cn/vX2mP

一、包括L2正则化项的损失函数长什么样

        在损失函数(如均方误差、交叉熵误差等)的基础上,L2正则化引入了一个与权重向量W相关的正则化项,通常表示为:

J(W, b; x, y) = L(W, b; x, y) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||W^{[l]}||^2_F

符号解释
J(W, b; x, y)包含正则化项的总损失函数
L(W, b; x, y)代表未加正则化项的原始损失函数,这通常是对每个样本的损失的平均值,如交叉熵损失或均方误差损失
W,b分别表示网络中的权重和偏置参数
\lambda正则化项的系数,这是一个超参数,用于控制正则化的强度
m训练样本的数量
\sum_{l=1}^{L} ||W^{[l]}||^2_FL2正则化项,通常称为权重衰减项。是所有权重矩阵的Frobenius范数的平方的和。Frobenius范数是一个矩阵范数,等同于矩阵元素的平方和的平方根
||W^{[l]}||^2_F
表示第l层权重矩阵的Frobenius范数的平方,而L是网络层的总数

二、L2正则化的作用机制

(1)权重缩小

        在优化过程中,由于L2正则化项的存在,当模型试图降低原始损失时,同时需要考虑减小权重的平方和。这会促使模型在训练过程中选择较小的权重值,避免权重值过大导致模型对训练数据的过度敏感。

(2)防止过拟合

        较小的权重值意味着模型对单个特征的影响不会过于突出,减少了模型对训练数据中噪声和个别样本特性的过度学习,有利于提高模型在未见过数据上的泛化能力。

三、L2正则化到底是怎么起作用的嘛!

(1)微观上,对激活函数的影响

        激活函数tanh(双曲正切函数)的输出范围在-1到1之间,形状类似于Sigmoid函数但更为平缓,且在两端饱和区的梯度更接近于0。公式就不赘述了之前的文章详细介绍过了,我们在这里只关注函数的图像,从图像上理解就可以了。

         用g(z)=tanh(z)表示,那么我们发现,只要z非常小,如果z只涉及少量参数,我们就只利用了双曲正切函数的线性状态,如下图所示:

        当L2正则化惩罚过大时,模型的权重被迫保持较小的值,也就是说z也会很小。对于tanh激活函数意味着:

  1. tanh函数接近线性(斜率为1),较小的权重导致输入信号大部分位于tanh函数的线性区域内,使得模型的非线性表达能力减弱,趋向于线性模型
  2. 过强的L2正则化可能会限制tanh激活函数充分发挥其非线性变换的能力,尤其是对于需要捕捉复杂非线性关系的任务,模型可能无法有效学习数据的深层次结构。

        在之前的文章中讲到过,如果激活函数都是线性函数,那么无论你的神经网络有多深,节点有很多,都相当于一个简单的线性模型。这就是为什么L2正则化通过约束权重的大小,间接降低了模型的复杂度。

(2)宏观上,对神经网络结构的影响

        现在我们假设一种很极端的情况,正则化参数\lambda非常大,因此对权重的惩罚非常大,导致权重很小,小到约等于0。因为公式z=W^Tx + b,我们如果不考虑偏置。就会得到z=W^Tx=0\cdot x=0,这样一来从神经网络的在该节点的输出a=tanh(0)=0意味着这个神经元死亡了。如果用图来表示的话就是:

        显然,模型的复杂度被降低了,提高模型的泛化能力。

这篇关于【机器学习300问】74、如何理解深度学习中L2正则化技术?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913620

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧