计算机视觉、机器学习代码示例集合

2024-04-17 23:48

本文主要是介绍计算机视觉、机器学习代码示例集合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原博客:http://blog.csdn.net/zouxy09/article/details/8550952,转载请声明原著地址,尊重作者。

一、特征提取Feature Extraction:

·         SIFT [1] [Demo program][SIFT Library] [VLFeat]

·         PCA-SIFT [2] [Project]

·         Affine-SIFT [3] [Project]

·         SURF [4] [OpenSURF] [Matlab Wrapper]

·         Affine Covariant Features [5] [Oxford project]

·         MSER [6] [Oxford project] [VLFeat]

·         Geometric Blur [7] [Code]

·         Local Self-Similarity Descriptor [8] [Oxford implementation]

·         Global and Efficient Self-Similarity [9] [Code]

·         Histogram of Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]

·         GIST [11] [Project]

·         Shape Context [12] [Project]

·         Color Descriptor [13] [Project]

·         Pyramids of Histograms of Oriented Gradients [Code]

·         Space-Time Interest Points (STIP) [14][Project] [Code]

·         Boundary Preserving Dense Local Regions [15][Project]

·         Weighted Histogram[Code]

·         Histogram-based Interest Points Detectors[Paper][Code]

·         An OpenCV - C++ implementation of Local Self Similarity Descriptors [Project]

·         Fast Sparse Representation with Prototypes[Project]

·         Corner Detection [Project]

·         AGAST Corner Detector: faster than FAST and even FAST-ER[Project]

·         Real-time Facial Feature Detection using Conditional Regression Forests[Project]

·         Global and Efficient Self-Similarity for Object Classification and Detection[code]

·         WαSH: Weighted α-Shapes for Local Feature Detection[Project]

·         HOG[Project]

·         Online Selection of Discriminative Tracking Features[Project]

                        

二、图像分割Image Segmentation:

·           Normalized Cut [1] [Matlab code]

·           Gerg Mori’ Superpixel code [2] [Matlab code]

·           Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]

·           Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]

·           OWT-UCM Hierarchical Segmentation [5] [Resources]

·           Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]

·           Quick-Shift [7] [VLFeat]

·           SLIC Superpixels [8] [Project]

·           Segmentation by Minimum Code Length [9] [Project]

·           Biased Normalized Cut [10] [Project]

·           Segmentation Tree [11-12] [Project]

·           Entropy Rate Superpixel Segmentation [13] [Code]

·           Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]

·           Efficient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]

·           Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]

·           Random Walks for Image Segmentation[Paper][Code]

·           Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]

·           An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]

·           Geodesic Star Convexity for Interactive Image Segmentation[Project]

·           Contour Detection and Image Segmentation Resources[Project][Code]

·           Biased Normalized Cuts[Project]

·           Max-flow/min-cut[Project]

·           Chan-Vese Segmentation using Level Set[Project]

·           A Toolbox of Level Set Methods[Project]

·           Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]

·           Improved C-V active contour model[Paper][Code]

·           A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]

·          Level Set Method Research by Chunming Li[Project]

·          ClassCut for Unsupervised Class Segmentation[code]

·         SEEDS: Superpixels Extracted via Energy-Driven Sampling [Project][other]

 

三、目标检测Object Detection:

·           A simple object detector with boosting [Project]

·           INRIA Object Detection and Localization Toolkit [1] [Project]

·           Discriminatively Trained Deformable Part Models [2] [Project]

·           Cascade Object Detection with Deformable Part Models [3] [Project]

·           Poselet [4] [Project]

·           Implicit Shape Model [5] [Project]

·           Viola and Jones’s Face Detection [6] [Project]

·           Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]

·           Hand detection using multiple proposals[Project]

·           Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]

·           Discriminatively trained deformable part models[Project]

·           Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]

·           Image Processing On Line[Project]

·           Robust Optical Flow Estimation[Project]

·           Where's Waldo: Matching People in Images of Crowds[Project]

·           Scalable Multi-class Object Detection[Project]

·           Class-Specific Hough Forests for Object Detection[Project]

·         Deformed Lattice Detection In Real-World Images[Project]

·         Discriminatively trained deformable part models[Project]

 

四、显著性检测Saliency Detection:

·           Itti, Koch, and Niebur’ saliency detection [1] [Matlab code]

·           Frequency-tuned salient region detection [2] [Project]

·           Saliency detection using maximum symmetric surround [3] [Project]

·           Attention via Information Maximization [4] [Matlab code]

·           Context-aware saliency detection [5] [Matlab code]

·           Graph-based visual saliency [6] [Matlab code]

·           Saliency detection: A spectral residual approach. [7] [Matlab code]

·           Segmenting salient objects from images and videos. [8] [Matlab code]

·           Saliency Using Natural statistics. [9] [Matlab code]

·           Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

·           Learning to Predict Where Humans Look [11] [Project]

·           Global Contrast based Salient Region Detection [12] [Project]

·           Bayesian Saliency via Low and Mid Level Cues[Project]

·           Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]

·         Saliency Detection: A Spectral Residual Approach[Code]

 

五、图像分类、聚类Image Classification, Clustering

·           Pyramid Match [1] [Project]

·           Spatial Pyramid Matching [2] [Code]

·           Locality-constrained Linear Coding [3] [Project] [Matlab code]

·           Sparse Coding [4] [Project] [Matlab code]

·           Texture Classification [5] [Project]

·           Multiple Kernels for Image Classification [6] [Project]

·           Feature Combination [7] [Project]

·           SuperParsing [Code]

·           Large Scale Correlation Clustering Optimization[Matlab code]

·           Detecting and Sketching the Common[Project]

·           Self-Tuning Spectral Clustering[Project][Code]

·           User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]

·           Filters for Texture Classification[Project]

·           Multiple Kernel Learning for Image Classification[Project]

·          SLIC Superpixels[Project]

 

六、抠图Image Matting

·           A Closed Form Solution to Natural Image Matting [Code]

·           Spectral Matting [Project]

·           Learning-based Matting [Code]

 

七、目标跟踪Object Tracking:

·           A Forest of Sensors - Tracking Adaptive Background Mixture Models [Project]

·           Object Tracking via Partial Least Squares Analysis[Paper][Code]

·           Robust Object Tracking with Online Multiple Instance Learning[Paper][Code]

·           Online Visual Tracking with Histograms and Articulating Blocks[Project]

·           Incremental Learning for Robust Visual Tracking[Project]

·           Real-time Compressive Tracking[Project]

·           Robust Object Tracking via Sparsity-based Collaborative Model[Project]

·           Visual Tracking via Adaptive Structural Local Sparse Appearance Model[Project]

·           Online Discriminative Object Tracking with Local Sparse Representation[Paper][Code]

·           Superpixel Tracking[Project]

·           Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]

·           Online Multiple Support Instance Tracking [Paper][Code]

·           Visual Tracking with Online Multiple Instance Learning[Project]

·           Object detection and recognition[Project]

·           Compressive Sensing Resources[Project]

·           Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[Project]

·           Tracking-Learning-Detection[Project][OpenTLD/C++ Code]

·           the HandVu:vision-based hand gesture interface[Project]

·           Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities[Project]

 

八、Kinect:

·           Kinect toolbox[Project]

·           OpenNI[Project]

·           zouxy09 CSDN Blog[Resource]

·           FingerTracker 手指跟踪[code]

 

九、3D相关:

·           3D Reconstruction of a Moving Object[Paper] [Code]

·           Shape From Shading Using Linear Approximation[Code]

·           Combining Shape from Shading and Stereo Depth Maps[Project][Code]

·           Shape from Shading: A Survey[Paper][Code]

·           A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[Project][Code]

·           Multi-camera Scene Reconstruction via Graph Cuts[Paper][Code]

·           A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[Paper][Code]

·           Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[Project]

·           Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[Code]

·           Learning 3-D Scene Structure from a Single Still Image[Project]

 

十、机器学习算法:

·           Matlab class for computing Approximate Nearest Nieghbor (ANN) [Matlab class providing interface toANN library]

·           Random Sampling[code]

·           Probabilistic Latent Semantic Analysis (pLSA)[Code]

·           FASTANN and FASTCLUSTER for approximate k-means (AKM)[Project]

·           Fast Intersection / Additive Kernel SVMs[Project]

·           SVM[Code]

·           Ensemble learning[Project]

·           Deep Learning[Net]

·           Deep Learning Methods for Vision[Project]

·           Neural Network for Recognition of Handwritten Digits[Project]

·           Training a deep autoencoder or a classifier on MNIST digits[Project]

·          THE MNIST DATABASE of handwritten digits[Project]

·          Ersatz:deep neural networks in the cloud[Project]

·          Deep Learning [Project]

·          sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[Project]

·          Weka 3: Data Mining Software in Java[Project]

·          Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凯)[Video]

·          CNN - Convolutional neural network class[Matlab Tool]

·          Yann LeCun's Publications[Wedsite]

·          LeNet-5, convolutional neural networks[Project]

·          Training a deep autoencoder or a classifier on MNIST digits[Project]

·          Deep Learning 大牛Geoffrey E. Hinton's HomePage[Website]

·         Multiple Instance Logistic Discriminant-based Metric Learning (MildML) and Logistic Discriminant-based Metric Learning (LDML)[Code]

·         Sparse coding simulation software[Project]

·         Visual Recognition and Machine Learning Summer School[Software]

 

十一、目标、行为识别Object, Action Recognition:

·           Action Recognition by Dense Trajectories[Project][Code]

·           Action Recognition Using a Distributed Representation of Pose and Appearance[Project]

·           Recognition Using Regions[Paper][Code]

·           2D Articulated Human Pose Estimation[Project]

·           Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[Paper][Code]

·           Estimating Human Pose from Occluded Images[Paper][Code]

·           Quasi-dense wide baseline matching[Project]

·           ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[Project]

·           Real Time Head Pose Estimation with Random Regression Forests[Project]

·           2D Action Recognition Serves 3D Human Pose Estimation[Project]

·           A Hough Transform-Based Voting Framework for Action Recognition[Project]

·           Motion Interchange Patterns for Action Recognition in Unconstrained Videos[Project]

·         2D articulated human pose estimation software[Project]

·         Learning and detecting shape models [code]

·         Progressive Search Space Reduction for Human Pose Estimation[Project]

·         Learning Non-Rigid 3D Shape from 2D Motion[Project]

 

十二、图像处理:

·         Distance Transforms of Sampled Functions[Project]

·         The Computer Vision Homepage[Project]

·         Efficient appearance distances between windows[code]

·         Image Exploration algorithm[code]

·         Motion Magnification 运动放大 [Project]

·         Bilateral Filtering for Gray and Color Images 双边滤波器 [Project]

·         A Fast Approximation of the Bilateral Filter using a Signal Processing Approach [Project]

                  

十三、一些实用工具:

·           EGT: a Toolbox for Multiple View Geometry and Visual Servoing[Project] [Code]

·           a development kit of matlab mex functions for OpenCV library[Project]

·           Fast Artificial Neural Network Library[Project]

 

 

十四、人手及指尖检测与识别:

·           finger-detection-and-gesture-recognition [Code]

·           Hand and Finger Detection using JavaCV[Project]

·           Hand and fingers detection[Code]


十五、场景解释:

·           Nonparametric Scene Parsing via Label Transfer [Project]


十六、光流Optical flow:

·         High accuracy optical flow using a theory for warping [Project]

·         Dense Trajectories Video Description [Project]

·         SIFT Flow: Dense Correspondence across Scenes and its Applications[Project]

·         KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker [Project]

·         Tracking Cars Using Optical Flow[Project]

·         Secrets of optical flow estimation and their principles[Project]

·         implmentation of the Black and Anandan dense optical flow method[Project]

·         Optical Flow Computation[Project]

·         Beyond Pixels: Exploring New Representations and Applications for Motion Analysis[Project]

·         A Database and Evaluation Methodology for Optical Flow[Project]

·         optical flow relative[Project]

·         Robust Optical Flow Estimation [Project]

·         optical flow[Project]


十七、图像检索Image Retrieval

·           Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval [Paper][code]


十八、马尔科夫随机场Markov Random Fields:

·         Markov Random Fields for Super-Resolution [Project]

·         A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors [Project]


十九、运动检测Motion detection:

·         Moving Object Extraction, Using Models or Analysis of Regions [Project]

·         Background Subtraction: Experiments and Improvements for ViBe [Project]

·         A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications [Project]

·         changedetection.net: A new change detection benchmark dataset[Project]

·         ViBe - a powerful technique for background detection and subtraction in video sequences[Project]

·         Background Subtraction Program[Project]

·         Motion Detection Algorithms[Project]

·         Stuttgart Artificial Background Subtraction Dataset[Project]

·         Object Detection, Motion Estimation, and Tracking[Project]



这篇关于计算机视觉、机器学习代码示例集合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913201

相关文章

【微信小程序canvas】实现小程序手写板用户签名(附代码)

【微信小程序canvas】实现小程序手写板用户签名(附代码) 工作中公司业务需要的微信小程序用户签字功能 先看效果图:   demo wxml <view class="wrapper"><view class="handBtn"><button catchtap="retDraw" class="delBtn">重写</button><button catchtap="subCa

Java集合的一些知识点和登录注册习题

java 集合中的一些知识点 集合:集合是存储对象数据的集合容器。 集合比数组的优势: 1. 集合可以存储任意类型的对象数据,数组只能存储同一种数据类型 的数据。 2. 集合的长度是会发生变化的,数组的长度是固定的。 ——-| Collection 单例集合的根接口。 ———-| List 如果是实现了List接口的集合类,具备的特点: 有序,可重复。 ———-| Set 如果是实现

视觉无人机高速公路违章检测的研究——阶段思考与计划2018.12.25-2019.1.1

上周的思路: https://blog.csdn.net/u010712012/article/details/85082271 上周的flag: 1.车道线怎么单独给检测出来,能不能通过阈值处理/ROI选取,把其他非车道线的部分给滤除。因为高速公路车道线基本都是白线,所以用阈值可能管用,或者彩色空间也可以试试。看看专门检测车道线的论文,只剩下背景和车道线的,相当于车道线分割提取出来的论文,是这

上海媒智科技计算机视觉算法

一面 1h 狂轰滥炸,把我会的都问了,不会的也问了。。。 0.自我介绍 1.无人机项目介绍 2.深挖细节:YOLOv3的数据增强有哪些? 从config文件中可以看出有角度旋转,饱和度,曝光度(明度)和色度的参数调整,还有jitter参数=0.3。这里是随机调整宽高比的范围。 但是在源码image.c当中有这些数据增强的函数。 3.YOLOv3中的多尺度的anchors和ground tr

Java中的SOLID原则及示例

类是任何Java应用程序的构建块。如果这些区块不强,那么建筑(即应用)将来将面临艰难时期。这实际上意味着,当应用程序范围上升或应用程序在生产或维护中面临某些设计问题时,不那么好的编写会导致非常困难的情况。 另一方面,一组精心设计和编写的类可以加速编码过程的突飞猛进,同时减少错误的数量。 在本教程中,我们将使用 5个最推荐的设计原则的示例来讨论Java中的SOLID原则,在编写类时我们应该记住这

Java比较和交换示例 - CAS算法

Java比较和交换示例 - CAS算法 由Lokesh Gupta | 提起下:多线程 一个Java 5中最好添加的是支持类,如原子操作AtomicInteger,AtomicLong等等。这些课程帮助您最大限度地减少复杂的(非必要)需要多线程的,如增加一些基本的操作代码或递减的值在多个线程之间共享。这些类内部依赖于名为CAS(比较和交换)的算法。在本文中,我将详细讨论这个概念。 1.乐观和

SpringApplication的run方法主要代码步骤

一、图片流程图 二、主要代码  /*** Run the Spring application, creating and refreshing a new* {@link ApplicationContext}.* @param args the application arguments (usually passed from a Java main method)* @return

Linux命令学习之二

每日一结 ​               命令置换:是将一个命令的输出作为另一个命令的参数,命令格式如下: commond1 `command2` 其中,命令command2的输出将作为命令command1的参数,需要注意的是, 命令置换的单引号为ESC键下方的 ` 其意思就是说,先运行单引号内的命令,再将其命令作为

Linux命令学习之一

每日一结                                                                                        注:当用户不确定一个软件包的类型时, 可使用file命令查看文件类型

2014年5月3日整理java笔试题+答案和自己的代码

一.选择题(每题1分) 1. jsp 有几个内置对象?( )(单选) A 5个 B 6个 C 9个 D 8个 2. 在JAVA中,如何跳出当前的多重嵌套循环?( ) (多选) A break B return C forward Dfinally 3. 四种会话跟踪技术,哪个范围最大?( ) (单选) A page B request C session Dapplication 4. java中